Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organotypic and microphysiological systems (MPS) that can emulate the molecular phenotype and function of human tissues, such as liver, are increasingly used in preclinical drug development. However, despite their improved predictivity, drug development success rates have remained low with most compounds failing in clinical phases despite promising preclinical data. Here, it is tested whether absorption of small molecules to polymers commonly used for MPS fabrication can impact preclinical pharmacological and toxicological assessments and contribute to the high clinical failure rates. To this end, identical devices are fabricated from eight different MPS polymers and absorption of prototypic compounds with different physicochemical properties are analyzed. It is found that overall absorption is primarily driven by compound hydrophobicity and the number of rotatable bonds. However, absorption can differ by >1000-fold between polymers with polydimethyl siloxane (PDMS) being most absorptive, whereas polytetrafluoroethylene (PTFE) and thiol-ene epoxy (TEE) absorbed the least. Strikingly, organotypic primary human liver cultures successfully flagged hydrophobic hepatotoxins in lowly absorbing TEE devices at therapeutically relevant concentrations, whereas isogenic cultures in PDMS devices are resistant, resulting in false negative safety signals. Combined, these results can guide the selection of MPS materials and facilitate the development of preclinical assays with improved translatability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469150 | PMC |
http://dx.doi.org/10.1002/adhm.202303561 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!