Assessing resolvability, parsability, and consistency of RDF resources: a use case in rare diseases.

J Biomed Semantics

Department of Medical Informatics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.

Published: December 2023

Introduction: Healthcare data and the knowledge gleaned from it play a key role in improving the health of current and future patients. These knowledge sources are regularly represented as 'linked' resources based on the Resource Description Framework (RDF). Making resources 'linkable' to facilitate their interoperability is especially important in the rare-disease domain, where health resources are scattered and scarce. However, to benefit from using RDF, resources need to be of good quality. Based on existing metrics, we aim to assess the quality of RDF resources related to rare diseases and provide recommendations for their improvement.

Methods: Sixteen resources of relevance for the rare-disease domain were selected: two schemas, three metadatasets, and eleven ontologies. These resources were tested on six objective metrics regarding resolvability, parsability, and consistency. Any URI that failed the test based on any of the six metrics was recorded as an error. The error count and percentage of each tested resource were recorded. The assessment results were represented in RDF, using the Data Quality Vocabulary schema.

Results: For three out of the six metrics, the assessment revealed quality issues. Eleven resources have non-resolvable URIs with proportion to all URIs ranging from 0.1% (6/6,712) in the Anatomical Therapeutic Chemical Classification to 13.7% (17/124) in the WikiPathways Ontology; seven resources have undefined URIs; and two resources have incorrectly used properties of the 'owl:ObjectProperty' type. Individual errors were examined to generate suggestions for the development of high-quality RDF resources, including the tested resources.

Conclusion: We assessed the resolvability, parsability, and consistency of RDF resources in the rare-disease domain, and determined the extent of these types of errors that potentially affect interoperability. The qualitative investigation on these errors reveals how they can be avoided. All findings serve as valuable input for the development of a guideline for creating high-quality RDF resources, thereby enhancing the interoperability of biomedical resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696869PMC
http://dx.doi.org/10.1186/s13326-023-00299-3DOI Listing

Publication Analysis

Top Keywords

rdf resources
24
resources
15
resolvability parsability
12
parsability consistency
12
rare-disease domain
12
rdf
8
consistency rdf
8
rare diseases
8
high-quality rdf
8
assessing resolvability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!