AI Article Synopsis

  • 2D keypoint detection is effective for analyzing human movements but struggles in situations with occluded or rotated body parts, particularly in sports like alpine skiing.
  • A new method has been developed that improves keypoint detection by rotating input videos and using a graph-based global solver to find the best rotation for each frame.
  • This approach significantly enhances the accuracy of keypoint detection, especially for challenging cases related to injuries in skiing, and a new dataset called Injury Ski II has been released to support further research in sports accident analysis.

Article Abstract

For most applications, 2D keypoint detection works well and offers a simple and fast tool to analyse human movements. However, there remain many situations where even the best state-of-the-art algorithms reach their limits and fail to detect human keypoints correctly. Such situations may occur especially when individual body parts are occluded, twisted, or when the whole person is flipped. Especially when analysing injuries in alpine ski racing, such twisted and rotated body positions occur frequently. To improve the detection of keypoints for this application, we developed a novel method that refines keypoint estimates by rotating the input videos. We select the best rotation for every frame with a graph-based global solver. Thereby, we improve keypoint detection of an arbitrary pose estimation algorithm, in particular for 'hard' keypoints. In the current proof-of-concept study, we show that our approach outperforms standard keypoint detection results in all categories and in all metrics, in injury-related out-of-balance and fall situations by a large margin as well as previous methods, in performance and robustness. The Injury Ski II dataset was made publicly available, aiming to facilitate the investigation of sports accidents based on computer vision in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697942PMC
http://dx.doi.org/10.1038/s41598-023-47875-2DOI Listing

Publication Analysis

Top Keywords

keypoint detection
16
improve keypoint
8
alpine ski
8
ski racing
8
keypoint
5
detection
5
graph-based approach
4
approach improve
4
detection complex
4
complex poses
4

Similar Publications

Deep learning-based morphometric analysis of zebrafish is widely utilized for non-destructively identifying abnormalities and diagnosing diseases. However, obtaining discriminative and continuous organ category decision boundaries poses a significant challenge by directly observing zebrafish larvae from the outside. To address this issue, this study simplifies the organ areas to polygons and focuses solely on the endpoint positioning.

View Article and Find Full Text PDF

Purpose: Lung fissure segmentation on CT images often relies on 3D convolutional neural networks (CNNs). However, 3D-CNNs are inefficient for detecting thin structures like the fissures, which make up a tiny fraction of the entire image volume. We propose to make lung fissure segmentation more efficient by using geometric deep learning (GDL) on sparse point clouds.

View Article and Find Full Text PDF

Human pose estimation is an important research direction in the field of computer vision, which aims to accurately identify the position and posture of keypoints of the human body through images or videos. However, multi-person pose estimation yields false detection or missed detection in dense crowds, and it is still difficult to detect small targets. In this paper, we propose a Mamba-based human pose estimation.

View Article and Find Full Text PDF

Image registration is a crucial post-processing technique in biomedical imaging, enabling the alignment and integration of images from various sources to facilitate accurate diagnosis, treatment planning, and longitudinal studies. This paper explores the application of Scale Invariant Feature Transform (SIFT), a robust feature-based method for the alignment of biomedical images. SIFT is particularly advantageous due to its invariance to scale, rotation, and affine transformations, making it well-suited for handling the diverse and complex nature of biomedical images.

View Article and Find Full Text PDF

Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder among children and adolescents. Behavioral detection and analysis play a crucial role in ADHD diagnosis and assessment by objectively quantifying hyperactivity and impulsivity symptoms. Existing video-based action recognition algorithms focus on object or interpersonal interactions, they may overlook ADHD-specific behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!