Microscopic examination of visible components based on micrographs is the gold standard for testing in biomedical research and clinical diagnosis. The application of object detection technology in bioimages not only improves the efficiency of the analyst but also provides decision support to ensure the objectivity and consistency of diagnosis. However, the lack of large annotated datasets is a significant impediment in rapidly deploying object detection models for microscopic formed elements detection. Standard augmentation methods used in object detection are not appropriate because they are prone to destroy the original micro-morphological information to produce counterintuitive micrographs, which is not conducive to build the trust of analysts in the intelligent system. Here, we propose a feature activation map-guided boosting mechanism dedicated to microscopic object detection to improve data efficiency. Our results show that the boosting mechanism provides solid gains in the object detection model deployed for microscopic formed elements detection. After image augmentation, the mean Average Precision (mAP) of baseline and strong baseline of the Chinese herbal medicine micrograph dataset are increased by 16.3% and 5.8% respectively. Similarly, on the urine sediment dataset, the boosting mechanism resulted in an improvement of 8.0% and 2.6% in mAP of the baseline and strong baseline maps respectively. Moreover, the method shows strong generalizability and can be easily integrated into any main-stream object detection model. The performance enhancement is interpretable, making it more suitable for microscopic biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2023813 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!