Carbon dioxide (CO) is a major greenhouse gas contributing to changing climatic conditions, which is a grand challenge affecting the security of food, energy, and environment. Photosynthesis plays the central role in plant-based CO reduction. Plants performing CAM (crassulacean acid metabolism) photosynthesis have a much higher water use efficiency than those performing C or C photosynthesis. Therefore, there is a great potential for engineering CAM in C or C crops to enhance food/biomass production and carbon sequestration on arid, semiarid, abandoned, or marginal lands. Recent progresses in CAM plant genomics and evolution research, along with new advances in plant biotechnology, have provided a solid foundation for bioengineering to convert C/C plants into CAM plants. Here, we first discuss the potential strategies for CAM engineering based on our current understanding of CAM evolution. Then we describe the technical approaches for engineering CAM in C and C plants, with a focus on an iterative four-step pipeline: (1) designing gene modules, (2) building the gene modules and transforming them into target plants, (3) testing the engineered plants through an integration of molecular biology, biochemistry, metabolism, and physiological approaches, and (4) learning to inform the next round of CAM engineering. Finally, we discuss the challenges and future opportunities for fully realizing the potential of CAM engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982706 | PMC |
http://dx.doi.org/10.1101/cshperspect.a041674 | DOI Listing |
Nutrients
January 2025
Department of Computer Engineering, Inje University, Gimhae 50834, Republic of Korea.
Background: Food image recognition, a crucial step in computational gastronomy, has diverse applications across nutritional platforms. Convolutional neural networks (CNNs) are widely used for this task due to their ability to capture hierarchical features. However, they struggle with long-range dependencies and global feature extraction, which are vital in distinguishing visually similar foods or images where the context of the whole dish is crucial, thus necessitating transformer architecture.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.
Over the past few years, biomaterial-based periodontal tissue engineering has gained popularity. An ideal biomaterial for treating periodontal defects is expected to stimulate periodontal-derived cells, allowing them to contribute most efficiently to tissue reconstruction. The present study focuses on evaluating the in vitro behavior of human periodontal ligament-derived stromal cells (hPDL-MSCs) when cultured on gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM).
View Article and Find Full Text PDFBMC Oral Health
January 2025
Clinic of Masticatory Disorders and Dental Biomaterials, Center for Dental Medicine, University of Zurich, Zurich, Switzerland.
Purpose: The aim of this study was to compare the wear and fracture resistance of single crowns produced from newly developed 3D printer resins used to produce permanent crowns and currently used composite CAD/CAM discs, after being thermomechanically aged in a chewing simulator.
Materials And Methods: A total of 112 stainless steel die models simulating mandibular left first molars were produced, 8 for each group. Single crowns were produced from 3 different discs (Grandio Voco [GR], breCAM HIPC [HC], and Shofu HC [SF]) by CAD/CAM milling method and manufactured from from 4 different permanent composite resins (Nexdent C&B MFH [ND], Permanent Bridge Saremco [PB], VarseoSmile Crownplus [VSC], and Şenertek P-Crown [PC]) using the 3D printing method.
Beijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.
Adolescence is defined as a population ranging from ten to nineteen years old. Permanent teeth in adolescents are of critical significance as they are actively involved in mastication, contribute to aesthetic appearance, play a role in pronunciation, and are integral to the growth and development of the stomatognathic system. Specifically, permanent teeth in adolescents comprise those with incomplete root development and those with complete root development but unstable gingival margin positions.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan.
Petroleum hydrocarbon pollution causes significant damage to soil, so accurate prediction and early intervention are crucial for sustainable soil management. However, traditional soil analysis methods often rely on statistical methods, which means they always rely on specific assumptions and are sensitive to outliers. Existing machine learning based methods convert features containing spatial information into one-dimensional vectors, resulting in the loss of some spatial features of the data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!