Problems associated with the colonization and leakage of invertebrates in the granular activated carbon (GAC) filters of waterworks have received increased attention in recent years. To study the effect of environmental factors and water quality on invertebrate abundances, and the backwash control for minimizing invertebrate abundance. A survey of the invertebrate community of GAC filters was carried out monthly from March 2021 to May 2022. A pilot-scale GAC system established in the laboratory alongside a lake, with a volume of 35.3 L. 45 invertebrate species were detected, and 40 of these were rotifers. Significant variation in abundance was observed among seasons before and after GAC filtration, the average invertebrate abundance in the inlet water was 11.1 times that in the filtrate. The GAC filter contained invertebrates that might be responsible for the large number of organisms in the filtrate. Invertebrate abundance in the GAC filter decreased gradually with the carbon layer depth, which the mean invertebrate abundances were 6,926, 5,232, and 3818 ind./kg in the top layer (TL), middle layer (ML), and bottom layer (BL), respectively. Invertebrate abundance was correlated with water temperature and varied seasonally. Among eight water quality parameters, chlorophyll a (Chla) and the total plate count (TPC) were most significantly correlated with invertebrate abundance. According to the statistical modeling and the optimization process of response surface methodology (RSM). The predicted optimal values were a flow rate of 6.36 L/h, a backwash cycle of 3.26 d, and a backwash intensity of 14.97 L/(m·s) for a minimum invertebrate abundance of 3013 ind./kg in the GAC filter. To maintain invertebrate abundance within an acceptable range, some of these measures might need to be modified depending on the actual conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.117797 | DOI Listing |
Glob Health Epidemiol Genom
January 2025
Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, Room A109, East Lansing, Michigan 48824, USA.
Cockroaches could play a role in the transmission dynamics of antimicrobial-resistant bacteria (ARB) at variable interfaces in Ugandan communities, acting as both reservoirs and vectors. This study investigated the burden and diversity of ARB carried by cockroaches in human settlements in Uganda, so as to understand their role in the spread of these pathogens and their potential as sentinels in antimicrobial resistance (AMR) surveillance programs. A retrospective analysis was conducted on two unpublished studies by Makerere University students.
View Article and Find Full Text PDFEcology
January 2025
Department of Biology, University of Louisville, Louisville, Kentucky, USA.
Lightning strikes are a common source of disturbance in tropical forests, and a typical strike generates large quantities of dead wood. Lightning-damaged trees are a consistent resource for tropical saproxylic (i.e.
View Article and Find Full Text PDFElife
January 2025
Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Haifa, Israel.
Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts () in response to insect movements over Israel's Hula Valley.
View Article and Find Full Text PDFEcology
January 2025
Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA.
Understanding how foundation species recover from disturbances is key for predicting the future of ecosystems in the Anthropocene. Coral reefs are dynamic ecosystems that can undergo rapid declines in coral abundance following disturbances. Understanding why some reefs recover quickly from these disturbances whereas others recover slowly (or not at all) gives insight into the drivers of community resilience.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Sorbonne Université, Institut d'Écologie et des Sciences de l'Environnement de Paris, 4 place Jussieu, 75005 Paris, France - Institut Universitaire de France, Paris, France.
Insects and flowering plants are the most abundant and diverse multicellular organisms on Earth, accounting for 75% of known species. Their evolution has been largely interdependent since the so-called Angiosperm Terrestrial Revolution (100-50 Mya), when the explosion of plant diversity stimulated the evolution of pollinating and herbivorous insects. Plant-insect interactions rely heavily on chemical communication via volatile organic compounds (VOCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!