This study explores the eco-friendly biosynthesis of silver nanoparticles (AgNPs) utilizing Camellia sinensis leaf extract. We assess their antioxidant and antibacterial properties. Furthermore, we impregnated AgNPs into 2 % chitosan (CHS) gel and assessed their wound-healing potential in Escherichia coli and Staphylococcus aureus infected wounds. Optimized AgNPs demonstrated a mean particle size of 36.90 ± 1.22 nm and a PDI of 0.049 ± 0.001. Green-synthesized AgNPs exhibited enhanced free radical inhibition (IC50: 31.45 μg/mL, 34.01 μg/mL, 27.40 μg/mL) compared to leaf extract (IC50: 52.67 μg/mL, 59.64 μg/mL, 97.50 μg/mL) in DPPH, hydrogen peroxide, and nitric oxide free radical scavenging assays, respectively. The MIC/MBC values of AgNPs against E. coli and S. aureus were 5 ppm/ 7.5 ppm and 10 ppm/ 15 ppm, respectively. Furthermore, our study showed that green-synthesized AgNPs at MIC significantly reduced the biofilm production of E. coli (70.37 %) and S. aureus (67.40 %). The CHS/AgNPs gel exhibited potent wound healing activities, comparable to a commercial cream with the re-epithelialization period of 8.16 ± 0.75. Histological analysis demonstrated enhanced skin regeneration with a thicker epidermal layer, well-defined papillary dermal structure, and organized collagen fibers. In summary, these findings hold promise for addressing bacterial infections, particularly those associated with biofilms-related wound infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128573DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
utilizing camellia
8
camellia sinensis
8
sinensis leaf
8
infected wounds
8
leaf extract
8
green-synthesized agnps
8
free radical
8
agnps
6
chitosan-based topical
4

Similar Publications

Adjuvants are crucial for maintaining specific, protective, and long-lasting immunity. Here, we aimed to evaluate the antigenic and immunogenic activity of a recombinant form of the S1 domain of the Spike protein, associated with biogenic silver nanoparticles (bio-AgNP) and Alhydrogel as an alternative and conventional adjuvant, respectively, for a SARS-CoV-2 subunit vaccine. We produced and evaluated the antigenicity of the recombinant S1 (rS1) protein by testing its recognition by antibodies present in SARS-CoV-2 positive human serum.

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

The detection of lead ions (Pb) is crucial due to its harmful effects on health and the environment. In this article, what we believe to be a novel dielectric-metal hybrid structure localized surface plasmon resonance (LSPR) sensor for ultra-trace detection of Pb is proposed, featuring a zinc sulfide layer, silver nanodisks (Ag-disks), and graphene oxide (GO) covering the Ag-disks. The sensor works by detecting the variation of gold nanoparticles (AuNPs) on its surface when Pb cleaves a substrate strand linked to a DNAzyme, causing the AuNPs modified on the substrate strand to disperse.

View Article and Find Full Text PDF

Analysis of the spatial distribution of metabolites in Aloe vera leaves by mass spectrometry imaging and UHPLC-UHRMS.

Sci Rep

January 2025

Department of Polymers and Biopolymers, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., Rzeszów, 35-959, Poland.

This study presents an investigation of the chemical composition of Aloe vera leaf tissue with a focus on the spatial distribution of compounds. The composition was studied using two mass spectrometry imaging techniques: silver-109 nanoparticles assisted laser desorption/ionization mass spectrometry imaging (AgNPs-LDI-MSI) and laser ablation-remote atmospheric pressure photoionization/chemical ionization mass spectrometry imaging (LARAPPI/CI-MSI) and the identification was aided by ultra-high-performance liquid chromatography and ultra-high-resolution mass spectrometry (UHPLC-UHRMS) analysis. The results showed an abundance of phenolic compounds with antioxidant, antimicrobial, and anti-inflammatory properties, making it a beneficial food additive and food packaging material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!