Globally rising livestock populations and declining wildlife numbers are likely to dramatically change disease risk for wildlife and livestock, especially at resources where they congregate. However, limited understanding of interspecific transmission dynamics at these hotspots hinders disease prediction or mitigation. In this study, we combined gastrointestinal nematode density and host foraging activity measurements from our prior work in an East African tropical savannah system with three estimates of parasite sharing capacity to investigate how interspecific exposures alter the relative riskiness of an important resource - water - among cattle and five dominant herbivore species. We found that due to their high parasite output, water dependence and parasite sharing capacity, cattle greatly increased potential parasite exposures at water sources for wild ruminants. When untreated for parasites, cattle accounted for over two-thirds of total potential exposures around water for wild ruminants, driving 2-23-fold increases in relative exposure levels at water sources. Simulated changes in wildlife and cattle ratios showed that water sources become increasingly important hotspots of interspecific transmission for wild ruminants when relative abundance of cattle parasites increases. These results emphasize that livestock have significant potential to alter the level and distribution of parasite exposures across the landscape for wild ruminants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697799 | PMC |
http://dx.doi.org/10.1098/rspb.2023.2239 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!