The characteristic curvature (Cc), within the hydrophilic-lipophilic difference + net () - average () curvature (HLD-NAC) framework, is the dimensionless net curvature, -· ( is the surfactant's tail length parameter), that a surfactant acquires at the characteristic condition ( = 25 °C, no added cosurfactants, oil with an equivalent alkane carbon number (EACN) of zero and for ionic surfactants, a total salinity () of 1 g NaCl/100 mL). A recent article demonstrated the validity of the Cc concept, where was assessed via oil and water solubilization radii. Here, we assess from the characteristic length (ξ) obtained from the analysis of SAXS profiles of microemulsions produced at semicharacteristic conditions (characteristic condition but varying ). The predicted relationship, -· = Cc + bi·ln(), was confirmed with the five ionic surfactants explored. The SAXS-assessed Cc (Cc = Cc/bi) values are consistent with those obtained from solubilization studies and phase inversion scans. The Cc-SAXS method provides a way to assess the hydrophobicity of ionic surfactants directly, avoiding the bias that could be introduced by cosurfactants in phase inversion studies and minimizing the impact of potential uncertainties in the surfactant volume to area ratio (/) required to calculate the solubilization radii in the solubilization method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c01855 | DOI Listing |
Sci Rep
January 2025
Pesticide Formulation Research Department, Central Agriculture Pesticides Laboratory, Agricultural Research Center, Alexandria, Egypt.
Formulation and adjuvant technologies can facilitate the use of insecticides that have higher biological efficiency application features. Safety, physicochemical properties by increasing consumer demand for safe food and enhancing operator safety. The aim of this current work was to develop a green efficient, and stable pesticide formulation.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Ordered nanoporous polymer membranes offer opportunities for systematically probing the mechanisms of ion transport under confinement and for realizing useful materials for electrochemical devices. Here, we examine the impact of morphology and ion hydration on the transport of hydroxide and bromide anions in nanostructured polymer membranes with 1 nm scale pores. We use aqueous lyotropic self-assembly of an amphiphilic monomer, with a polymerizable surfactant to create direct hexagonal (H) and gyroid mesophases.
View Article and Find Full Text PDFLangmuir
January 2025
College of Mining Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
Flotation is an interfacial process involving gas, liquid, and solid phases, where polar ionic promoters significantly influence both gas-liquid and solid-liquid interfaces during low-rank coal (LRC) flotation. This study examines how the structures of hydrophilic groups in cation-anion mixed promoters affect the interfacial flotation performance of LRC pulp using flotation tests, surface tension tests, wetting heat tests, and molecular dynamics simulations. Results indicate that cation-anion mixed promoters enhance the LRC floatability to varying degrees.
View Article and Find Full Text PDFJ Biomater Appl
January 2025
Biomedical Engineering Graduate Program, Toronto Metropolitan University, Toronto, ON, Canada.
This study explores mesoporous bioactive glasses (MBGs) that show promise as advanced therapeutic delivery platforms owing to their tailorable porous properties enabling enhanced drug loading capacity and biomimetic chemistry for localized, sustained release. This work systematically investigates the complex relationship between MBG composition and surfactant templating on structural evolution, bioactive response, resultant drug loading efficiency and release. A total of 12 samples of sol-gel-derived MBG were synthesized using cationic and non-ionic structure-directing agents (cetyltrimethylammonium bromide, Pluronic F127 and P123) while modulating the SiO/CaO content, generating MBG with surface areas of 60-695 m/g.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
: Drugs exhibiting poor aqueous solubility present a challenge to efficient delivery to the site of action. Spanlastics (a nano, surfactant-based drug delivery system) have emerged as a powerful tool to improve solubility, bioavailability, and delivery to the site of action. This study aimed to better understand factors affecting the physicochemical properties of spanlastics, quantify their effects, and use them to enhance the bioavailability of famotidine (FMT), a model histamine H2 receptor antagonist (BCS class IV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!