The energy landscape of the ribosome.

Biopolymers

Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA.

Published: March 2024

The ribosome is a prototypical assembly that can be used to establish general principles and techniques for the study of biological molecular machines. Motivated by the fact that the dynamics of every biomolecule is governed by an underlying energy landscape, there has been great interest to understand and quantify ribosome energetics. In the present review, we will focus on theoretical and computational strategies for probing the interactions that shape the energy landscape of the ribosome, with an emphasis on more recent studies of the elongation cycle. These efforts include the application of quantum mechanical methods for describing chemical kinetics, as well as classical descriptions to characterize slower (microsecond to millisecond) large-scale (10-100 Å) rearrangements, where motion is described in terms of diffusion across an energy landscape. Together, these studies provide broad insights into the factors that control a diverse range of dynamical processes in this assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.23570DOI Listing

Publication Analysis

Top Keywords

energy landscape
16
landscape ribosome
8
energy
4
ribosome
4
ribosome ribosome
4
ribosome prototypical
4
prototypical assembly
4
assembly establish
4
establish general
4
general principles
4

Similar Publications

Light-Driven Nanonetwork Assembly of Gold Nanoparticles via 3D Printing for Optical Sensors.

ACS Appl Nano Mater

December 2024

Assistant Professor of Material Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, Arizona 85287, United States.

Additive manufacturing known as 3D printing has transformed the material landscape, with intricate structures and rapid prototyping for modern production. While nanoscale 3D printing has made significant progress, a critical challenge remains in the rapid, high-throughput tailoring of complex nanostructures. Here, we present a 3D printing-facilitated, light-driven assembly technology for rapid surface patterning consisting of complex particle nanonetworks with balanced fabrication resolution and processing scalability.

View Article and Find Full Text PDF

A cystine-dense peptide (CDP) named TfRB1 was identified for its ability to bind to the transferrin receptor (TfR). CDPs are stabilized by their disulfide bonds, and variants of TfRB1 - specifically TfRB1G1, TfRB1G2, and TfRB1G3 - are explored for their potential to transport molecules across the blood-brain barrier (BBB) into the central nervous system (CNS). This study employed molecular modeling and dynamics simulations to characterize the interactions between these TfRB1 variants and TfR.

View Article and Find Full Text PDF

Biological ageing can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function. Mammalian brains consist of thousands of cell types, which may be differentially susceptible or resilient to ageing. Here we present a comprehensive single-cell RNA sequencing dataset containing roughly 1.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is the most common manifestation of oral cancer. It has been proposed that periodontal pathogens contribute to OSCC progression, mainly by their virulence factors. However, the main periodontal pathogen and its mechanism to modulate OSCC cells remains not fully understood.

View Article and Find Full Text PDF

SARS-CoV-2 remains a global threat with new sublineages posing challenges, particularly in the Philippines. Hesperidin (HD) is being studied as a potential prophylactic for COVID-19. However, the virus's rapid evolution could alter how HD binds to it, affecting its effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!