Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Contrast-enhanced ultrasound (CEUS) shows different enhancement patterns depending on the time after administration of the contrast agent. The aim of this study was to evaluate the diagnostic performance of liver nodule characterization using our proposed deep learning model with input of nine CEUS images.
Methods: A total of 181 liver lesions (48 benign, 78 hepatocellular carcinoma (HCC), and 55 non-HCC malignant) were included in this prospective study. CEUS were performed using the contrast agent Sonazoid, and in addition to B-mode images before injection, image clips were stored every minute up to 10 min. A deep learning model was developed by arranging three ResNet50 transfer learning models in parallel. This proposed model allowed inputting up to nine datasets of different phases of CEUS and performing image augmentation of nine images synchronously. Using the results, the correct prediction rate, sensitivity, and specificity between "benign" and "malignant" cases were analyzed for each combination of the time phase. These accuracy values were also compared with the washout score judged by a human.
Results: The proposed model showed performance superior to the referential standard model when the dataset from B-mode to the 10-min images were used (sensitivity: 93.2%, specificity: 65.3%, average correct answer rate: 60.1%). It also maintained 90.2% sensitivity and 61.2% specificity even when the dataset was limited to 2 min after injection, and this accuracy was equivalent to or better than human scoring by experts.
Conclusion: Our proposed model has the potential to identify tumor types earlier than the Kupffer phase, but at the same time, machine learning confirmed that Kupffer-phase Sonazoid images contain essential information for the classification of liver nodules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10396-023-01390-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!