A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rational Design of Guanidinium-Based Bio-MCOF as a Multifunctional Nanocatalyst in Tumor Cells for Enhanced Chemodynamic Therapy. | LitMetric

Rational Design of Guanidinium-Based Bio-MCOF as a Multifunctional Nanocatalyst in Tumor Cells for Enhanced Chemodynamic Therapy.

ACS Appl Mater Interfaces

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.

Published: December 2023

Chemodynamic therapy (CDT) has emerged as a promising approach to cancer treatment, which can break the intracellular redox state balance and result in severe oxidative damage to biomolecules and organelles with the advantages of being less dependent on external stimulation, having deep tissue-healing abilities, and being resistant to drug resistance. There is considerable interest in developing CDT drugs with high efficiency and low toxicity. In this study, a new guanidinium-based biological metal covalent organic framework (Bio-MCOF), GZHMU-1@Mo, is rationally designed and synthesized as a multifunctional nanocatalyst in tumor cells for enhanced CDT. The DFT calculation and experimental results showed that due to the ability of MoO ion to promote electron transfer and increase the redox active site, Cu clusters and MoO ions in GZHMU-1@Mo can synergistically catalyze the production of reactive oxygen species (ROS) from oxygen and HO in tumor cells, as well as degrade intracellular reducing substances, GSH and NADH, so as to disrupt the redox balance in tumor cells. Moreover, GZHMU-1@Mo exhibits a potent killing effect on tumor cells under both normal oxygen and anaerobic conditions. Further in vitro and in vivo antiproliferation studies revealed that the GZHMU-1@Mo nanoagent displays a remarkable antiproliferation effect and effectively inhibits tumor growth. Taken together, our study provides an insightful reference benchmark for the rational design of Bio-MCOF-based nanoagents with efficient CDT.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c13555DOI Listing

Publication Analysis

Top Keywords

tumor cells
20
rational design
8
multifunctional nanocatalyst
8
nanocatalyst tumor
8
cells enhanced
8
chemodynamic therapy
8
tumor
6
cells
5
design guanidinium-based
4
guanidinium-based bio-mcof
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!