AI Article Synopsis

  • - The advancement of all-solid-state lithium-metal batteries (ASSLMBs) is challenged by issues like low efficiency and short lifespans due to lithium dendrite growth.
  • - Researchers have created a multiple-diffusion-channel, N,S-doped soft carbon anode with expanded layer spacing, which enhances lithium transport and suppresses dendrite formation.
  • - This innovation leads to impressive performance metrics for ASSLMBs, including a record current density, high energy density, and the ability to endure 13,000 cycles, marking a significant step toward practical applications.

Article Abstract

The development of all-solid-state lithium-metal batteries (ASSLMBs) is impeded by low coulomb efficiency, short lifetime, poor rate performance, and other problems caused by the rapid growth of lithium (Li) dendrites. Herein, a multiple-diffusion-channel N,S-doped soft carbon with expanded layer spacing is designed/developed by thiourea calcination for dendrite-free anodes. Since the enlarged layer spacing can improve Li transportation rate within the layers and N,S-doping can facilitate Li transport between the layers, the bulk phase diffusion (not just surface diffusion) kinetics can be improved, which in turn reduces the local current density, inhibits the growth of Li dendrites, and improves the rate performance. The resulting ASSLMB achieves record-high current density (15 mA cm ), areal capacity (20 mAh cm ), energy density (403 Wh kg ), and ultra-long cycle life (13 000 cycles). >305 Wh kg pouch cells are realized, representing one of the most critical breakthroughs for real-world application of ASSLMBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202310395DOI Listing

Publication Analysis

Top Keywords

diffusion kinetics
8
rate performance
8
layer spacing
8
current density
8
soft carbon-thiourea
4
carbon-thiourea fast
4
fast bulk
4
bulk diffusion
4
kinetics solid-state
4
solid-state lithium
4

Similar Publications

In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for "rocking chair" zinc-ion battery.

J Colloid Interface Sci

January 2025

School of Mechanical Engineering and Mechanics, School of Chemistry, Xiangtan University, Xiangtan 411105 PR China. Electronic address:

Developing insertion-type anodes is essential for designing high-performance "rocking chair" zinc-ion batteries. BiOCl shows great potential as an insertion-type anode material for Zn storage due to its high specific capacity and unique layered structure. However, the development of BiOCl has been significantly hampered by its poor stability and kinetics during cycling.

View Article and Find Full Text PDF

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

This study thoroughly investigated the adsorption of Congo Red (CR) dye onto various microplastics (MPs), including high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP) and polyethylene terephthalate (PET). Initial adsorption capacities (q) revealed that HDPE had the highest value (21.90 mg/g), followed by PVC (4.

View Article and Find Full Text PDF

Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.

View Article and Find Full Text PDF

To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd by modified biochar under different pH and dosages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!