A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polymers from Cellulosic Waste: Direct Polymerization of Levoglucosenone using DBU as a Catalyst. | LitMetric

Polymers from Cellulosic Waste: Direct Polymerization of Levoglucosenone using DBU as a Catalyst.

ChemSusChem

Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia.

Published: April 2024

The bio-based platform molecule levoglucosenone (LGO) is now produced at multi-ton scale by the pyrolysis of cellulosic waste. As such it has become an industrially viable, non-petroleum-derived chemical feedstock. Herein we report the direct (one-step) and operationally simple polymerization of LGO that provides a highly sustainable method for polymer synthesis. Specifically, the ability of LGO to act as an electrophile has been harnessed so as to deliver high molecular weight polymers (M=236,000 g/mol, Đ=2.4) possessing excellent thermal stabilities (T=249 °C). Furthermore, there is a significant capacity for the effective chemical manipulation of these polymers as exemplified by treatment of them under Baeyer-Villiger conditions and so creating a simple and green route to hydrophilic materials. These one- and two-step transformations provide the most direct route to new, LGO-derived polymer scaffolds yet reported. E-factors of ca. 0.012 and atom economies of up to 99 % have been realized.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202301165DOI Listing

Publication Analysis

Top Keywords

cellulosic waste
8
polymers cellulosic
4
waste direct
4
direct polymerization
4
polymerization levoglucosenone
4
levoglucosenone dbu
4
dbu catalyst
4
catalyst bio-based
4
bio-based platform
4
platform molecule
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!