Background: To identify novel gene combinations and to develop an early diagnostic model for Polycystic Ovary Syndrome (PCOS) through the integration of artificial neural networks (ANN) and random forest (RF) methods.
Methods: We retrieved and processed gene expression datasets for PCOS from the Gene Expression Omnibus (GEO) database. Differential expression analysis of genes (DEGs) within the training set was performed using the "limma" R package. Enrichment analyses on DEGs using gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and immune cell infiltration. The identification of critical genes from DEGs was then performed using random forests, followed by the developing of new diagnostic models for PCOS using artificial neural networks.
Results: We identified 130 up-regulated genes and 132 down-regulated genes in PCOS compared to normal samples. Gene Ontology analysis revealed significant enrichment in myofibrils and highlighted crucial biological functions related to myofilament sliding, myofibril, and actin-binding. Compared with normal tissues, the types of immune cells expressed in PCOS samples are different. A random forest algorithm identified 10 significant genes proposed as potential PCOS-specific biomarkers. Using these genes, an artificial neural network diagnostic model accurately distinguished PCOS from normal samples. The diagnostic model underwent validation using the independent validation set, and the resulting area under the receiver operating characteristic curve (AUC) values was consistent with the anticipated outcomes.
Conclusion: Utilizing unique gene combinations, this research created a diagnostic model by merging random forest techniques with artificial neural networks. The AUC indicated a notably superior performance of the diagnostic model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693771 | PMC |
http://dx.doi.org/10.2147/JIR.S438838 | DOI Listing |
World J Gastrointest Oncol
January 2025
Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, China.
Background: Microvascular invasion (MVI) is a significant risk factor for recurrence and metastasis following hepatocellular carcinoma (HCC) surgery. Currently, there is a paucity of preoperative evaluation approaches for MVI.
Aim: To investigate the predictive value of texture features and radiological signs based on multiparametric magnetic resonance imaging in the non-invasive preoperative prediction of MVI in HCC.
Appl Sci (Basel)
June 2024
Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA.
Understanding metabolic cost through biomechanical data, including ground reaction forces (GRFs) and joint moments, is vital for health, sports, and rehabilitation. The long stabilization time (2-5 min) of indirect calorimetry poses challenges in prolonged tests. This study investigated using artificial neural networks (ANNs) to predict metabolic costs from the GRF and joint moment time series.
View Article and Find Full Text PDFInt J Telemed Appl
January 2025
Medical Familiar Unit, Instituto de Seguridad y Servicios Sociales de Los Trabajadores del Estado, Torreón, Coahuila, Mexico.
This study proposes an automated system for assessing lung damage severity in coronavirus disease 2019 (COVID-19) patients using computed tomography (CT) images. These preprocessed CT images identify the extent of pulmonary parenchyma (PP) and ground-glass opacity and pulmonary infiltrates (GGO-PIs). Two types of images-saliency () image and discrete cosine transform (DCT) energy image-were generated from these images.
View Article and Find Full Text PDFOver the past decade, there has been a global increase in the incidence of skin cancers. Skin cancer has serious consequences if left untreated, potentially leading to more advanced cancer stages. In recent years, deep learning based convolutional neural network have emerged as powerful tools for skin cancer detection.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Al-Lith University College, Umm Al-Qura University, Makkah, Saudi Arabia.
Background: Invasive breast cancer (BC) is a highly life-threatening disease affecting women world-wide. While its early identification may benefit the provision of more effective therapies, several BC-associated factors may influence BC patients' therapeutic outcomes. Therefore, identifying novel prognostic and therapeutic targets for invasive BC can help with accurate prognosis and therapy-related decisions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!