NQ8GII4 is an endophytic fungus isolated from the root of healthy wolfberry (). Previous studies have reported that NQ8GII4 could dwell in wolfberry roots and enhance the defense responses in wolfberry against root rot, which is caused by . To further elucidate the molecular mechanism of wolfberry disease resistance induced by NQ8GII4, in the present study, we adopted RNA sequencing analysis to profile the transcriptome of wolfberry response to NQ8GII4 infestation over a time course of 3 and 7 days postinoculation. Gene ontology enrichment analysis revealed that differentially expressed genes (DEGs) were enriched in biological regulation, response to stimulus, signaling, detoxification, immune system process, transporter activity, electron carrier activity, transcription factor activity, nucleic acid binding transcription factor, and antioxidant activity. Through Kyoto Encyclopedia of Genes and Genomes analysis, it was found that many of these DEGs were enriched in pathways related to plant-pathogen interactions, hormone signal transduction, and the phenylpropanoid biosynthesis pathway in wolfberry. This result suggested that innate immunity, phytohormone signaling, and numerous phenylpropanoid compounds comprise a complex defense network in wolfberry. Chloroplast 50S ribosomal proteins were consistently located at the core position of the response in wolfberry following infestation with NQ8GII4 analyzed by the protein-protein interaction network. This study elucidated the molecular mechanism underlying the interaction between NQ8GII4 and wolfberry, clarified the wolfberry immune response network to endophytic fungi infestation, identified candidate resistance genes in wolfberry, and provided a fundamental date for subsequent work.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-07-23-1397-REDOI Listing

Publication Analysis

Top Keywords

wolfberry
12
response wolfberry
8
wolfberry infestation
8
molecular mechanism
8
degs enriched
8
transcription factor
8
nq8gii4
7
transcriptional response
4
infestation
4
infestation endophytic
4

Similar Publications

The current trend in food innovations includes developing products containing plant ingredients or extracts rich in bioactive compounds. This study aimed to prepare and characterize skimmed thermally treated goat's milk powders enriched with lyophilized fruit extracts of Murray (GMLR) and L. (GMLB).

View Article and Find Full Text PDF

β-1,3-Glucanases (Glu) are key enzymes involved in plant defense and physiological processes through the hydrolysis of β-1,3-glucans. This study provides a comprehensive analysis of the β-1,3-glucanase gene family in wolfberry (), including their chromosomal distribution, evolutionary relationships, and expression profiles. A total of 58 genes were identified, distributed across all 12 chromosomes.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) plays an important role to respond in the defence against damage when tomato leaves are under different types of adversity stresses. This work employed microhyperspectral imaging (MHSI) and visible near-infrared (Vis-NIR) hyperspectral imaging (HSI) technologies to predict tomato leaf SOD activity. The macroscopic model of SOD activity in tomato leaves was constructed using the convolutional neural network in conjunction with the long and short-term temporal memory (CNN-LSTM) technique.

View Article and Find Full Text PDF

var. (2010), is a new variety of in Solanaceae. Here, we sequenced, assembled, and annotated the complete chloroplast (cp) genome of var.

View Article and Find Full Text PDF

is a plant of considerable economic importance in China. However, root rot poses a significant threat to its yield and quality, leading to substantial economic losses. The disparities in rhizosphere soil fungal communities between healthy and root-rot-affected have not been thoroughly explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!