Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Postmenopausal osteoporosis (PMOP) has become one of most frequent bone diseases worldwide with aging population. Lycii Fructus, a common plant fruit with the property of drug homologous food, has long since been used to treat PMOP. The aim of this study is to explore pharmacological mechanisms of Lycii Fructus against PMOP through using network pharmacology approach. The active ingredients of Lycii Fructus were obtained from Traditional Chinese Medicine System Pharmacology database. Target fishing was performed on these ingredients in UniProt database for identification of the relative targets. Then, we screened the targets related to PMOP using GeneCards database and DisGeNET database. The overlapping genes between PMOP and Lycii Fructus were obtained to perform protein-protein interaction, gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis. A total of 35 active ingredients were identified in Lycii Fructus, and fished 158 related targets. Simultaneously, 292 targets associated with PMOP were obtained from GeneCards database and DisGeNET database. By drawing Venn diagram, 41 overlapping genes were obtained, and were considered as therapeutically relevant. Gene ontology enrichment analysis predicted that anti-inflammation and promotion of angiogenesis might be 2 potential mechanism of Lycii Fructus for PMOP treatment. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed several pathways, such as IL-17 pathway, TNF pathway, MAPK pathway, PI3K-Akt signaling pathway and HIF signaling pathway were involved in regulating these 2 biological processes. Through the method of network pharmacology, we systematically investigated the mechanisms of Lycii Fructus against PMOP. The identified multi-targets and multi-pathways provide new insights to further determinate its exact pharmacological mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695557 | PMC |
http://dx.doi.org/10.1097/MD.0000000000036292 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!