Novel Independent Trans- and Cis-Genetic Variants Associated with CYP2D6 Expression and Activity in Human Livers.

Drug Metab Dispos

Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)

Published: January 2024

AI Article Synopsis

  • * A genome-wide association study (GWAS) was conducted to find new genetic variants linked to CYP2D6 protein expression and activity, resulting in the identification of 44 significant single nucleotide polymorphisms (SNPs).
  • * Five of these SNPs, including notable variants, were found to significantly impact CYP2D6 protein levels and enzyme activity, suggesting their importance in drug metabolism variability among individuals.

Article Abstract

Cytochrome P450 2D6 (CYP2D6) is a critical hepatic drug-metabolizing enzyme in humans, responsible for metabolizing approximately 20%-25% of commonly used medications such as codeine, desipramine, fluvoxamine, paroxetine, and tamoxifen. The CYP2D6 gene is highly polymorphic, resulting in substantial interindividual variability in its catalytic function and the pharmacokinetics and therapeutic outcomes of its substrate drugs. Although many functional CYP2D6 variants have been discovered and validated, a significant portion of the variability in the expression and activity of CYP2D6 remains unexplained. In this study, we performed a genome-wide association study (GWAS) to identify novel variants associated with CYP2D6 protein expression in individual human livers, followed by a conditional analysis to control for the effect of functional CYP2D6 star alleles. We also examined their impact on hepatic CYP2D6 activity. Genotyping on a genome-wide scale was achieved using the Illumina Multi-Ethnic Genotyping Array (MEGA). A data-independent acquisition (DIA)-based proteomics method was used to quantify CYP2D6 protein concentrations. CYP2D6 activity was determined by measuring the dextromethorphan O-demethylation in individual human liver s9 fractions. The GWAS identified 44 single nuclear polymorphisms (SNPs) that are significantly associated with CYP2D6 protein expressions with a value threshold of 5.0 × 10 After the conditional analysis, five SNPs, including the cis-variants rs1807493 and rs1062753 and the trans-variants rs4073010, rs729559, and rs80274432, emerged as independent variants significantly correlated with hepatic CYP2D6 protein expressions. Notably, four of these SNPs, except for rs80274432, also exhibited a significant association with CYP2D6 activities in human livers, suggesting their potential as novel and independent cis- and trans-variants regulating CYP2D6. SIGNIFICANT STATEMENT: Using individual human livers, we identified four novel cis- and trans-pQTLs/aQTLs (protein quantitative trait loci/activity quantitative trait loci) of Cytochrome P450 2D6 (CYP2D6) that are independent from known functional CYP2D6 star alleles. This study connects the CYP2D6 gene expression and activity, enhancing our understanding of the genetic variants associated with CYP2D6 protein expression and activity, potentially advancing our insight into the interindividual variability in CYP2D6 substrate medication response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801631PMC
http://dx.doi.org/10.1124/dmd.123.001548DOI Listing

Publication Analysis

Top Keywords

cyp2d6 protein
20
cyp2d6
19
associated cyp2d6
16
expression activity
16
human livers
16
variants associated
12
functional cyp2d6
12
individual human
12
novel independent
8
cytochrome p450
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!