Senescent cells accumulate in the kidney with aging, after acute and chronic injuries, and are present in increased numbers in deteriorating kidney transplants. Senescent cells have undergone permanent cell cycle arrest and release many proinflammatory cytokines/chemokines and profibrotic factors: the senescence-associated secretory phenotype. Recent work from several groups including our own has shown that senescent cells play a causative role in progression of kidney disease. Experimental evidence also indicates that targeting senescent cells has potential to alter the renal regenerative response, reducing progressive fibrosis and improving functional recovery after injury. Research and clinical interest is focused on understanding how accumulating chronic senescent cells link acute injury to progressive fibrosis, dysfunction, and mortality in human CKD. In this review, we outline current protocols for the identification of how senescent cells are identified in vitro and in vivo . We discuss the proposed mechanisms of actions of first-generation senolytic and senomorphic agents, such as ABT-263 (navitoclax) which targets the BCL2 family of survival factors, and senomorphic agents such as metformin which targets aspects of the senescence-associated secretory phenotype. We also review that emerging technologies, such as nanocarriers, are now being developed to have safer delivery systems for senolytics, greater specificity, fewer off-target effects, and less toxicity. Other methods of senescent cell elimination being developed target various immune evasion tactics displayed by these cells. By understanding the role of senescence in kidney homeostasis and disease, developing new, targeted compounds and the tools to allow their efficacy to be charted noninvasively, it should become possible for senolytic treatments to move from the bench to bedside.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833603 | PMC |
http://dx.doi.org/10.34067/KID.0000000000000316 | DOI Listing |
J Tissue Eng
January 2025
Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.
View Article and Find Full Text PDFFront Neurosci
December 2024
Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.
Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.
View Article and Find Full Text PDFSample multiplexing is an emerging method in single-cell RNA sequencing (scRNA-seq) that addresses high costs and batch effects. Current multiplexing schemes use DNA labels to barcode cell samples but are limited in their stability and extent of labeling across heterogeneous cell populations. Here, we introduce Nanocoding using lipid nanoparticles (LNPs) for high barcode labeling density in multiplexed scRNA-seq.
View Article and Find Full Text PDFAtherosclerosis, a major contributor to cardiovascular disease, involves lipid accumulation and inflammatory processes in arterial walls, with oxidized low-density lipoprotein (OxLDL) playing a central role. OxLDL is increased during aging and stimulates monocyte transformation into foam cells and induces metabolic reprogramming and pro-inflammatory responses, accelerating atherosclerosis progression and contributing to other age-related diseases. This study investigated the effects of Mdivi-1, a mitochondrial fission inhibitor, and S1QEL, a selective complex I-associated reactive oxygen species (ROS) inhibitor, on OxLDL-induced responses in monocytes.
View Article and Find Full Text PDFTumor heterogeneity is the substrate for tumor evolution and the linchpin of treatment resistance. Cancer cell heterogeneity is largely attributed to distinct genetic changes within each cell population. However, the widespread epigenome repatterning that characterizes most cancers is also highly heterogenous within tumors and could generate cells with diverse identities and malignant features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!