Background: Recent advances in machine learning combined with the growing availability of digitized health records offer new opportunities for improving early diagnosis of depression. An emerging body of research shows that Electronic Health Records can be used to accurately predict cases of depression on the basis of individual's primary care records. The successes of these studies are undeniable, but there is a growing concern that their results may not be replicable, which could cast doubt on their clinical usefulness.

Methods: To address this issue in the present paper, we set out to reproduce and replicate the work by Nichols et al. (2018), who trained predictive models of depression among young adults using Electronic Healthcare Records. Our contribution consists of three parts. First, we attempt to replicate the methodology used by the original authors, acquiring a more up-to-date set of primary health care records to the same specification and reproducing their data processing and analysis. Second, we test models presented in the original paper on our own data, thus providing out-of-sample prediction of the predictive models. Third, we extend past work by considering several novel machine-learning approaches in an attempt to improve the predictive accuracy achieved in the original work.

Results: In summary, our results demonstrate that the work of Nichols et al. is largely reproducible and replicable. This was the case both for the replication of the original model and the out-of-sample replication applying NRCBM coefficients to our new EHRs data. Although alternative predictive models did not improve model performance over standard logistic regression, our results indicate that stepwise variable selection is not stable even in the case of large data sets.

Conclusion: We discuss the challenges associated with the research on mental health and Electronic Health Records, including the need to produce interpretable and robust models. We demonstrated some potential issues associated with the reliance on EHRs, including changes in the regulations and guidelines (such as the QOF guidelines in the UK) and reliance on visits to GP as a predictor of specific disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696659PMC
http://dx.doi.org/10.1186/s41512-023-00160-2DOI Listing

Publication Analysis

Top Keywords

predictive models
16
health records
16
electronic health
12
diagnosis depression
8
depression young
8
young adults
8
adults electronic
8
care records
8
work nichols
8
records
7

Similar Publications

Metal-Independent Correlations for Site-Specific Binding Energies of Relevant Catalytic Intermediates.

JACS Au

December 2024

SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.

Establishing energy correlations among different metals can accelerate the discovery of efficient and cost-effective catalysts for complex reactions. Using a recently introduced coordination-based model, we can predict site-specific metal binding energies (Δ ) that can be used as a descriptor for chemical reactions. In this study, we have examined a range of metals including Ag, Au, Co, Cu, Ir, Ni, Os, Pd, Pt, Rh, and Ru and found linear correlations between predicted Δ and adsorption energies of CH and O (Δ and Δ ) at various coordination environments for all the considered metals.

View Article and Find Full Text PDF

Hydrogen Bond Blueshifts in Nitrile Vibrational Spectra Are Dictated by Hydrogen Bond Geometry and Dynamics.

JACS Au

December 2024

Freie Universität Berlin, Physics Department, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany.

Vibrational Stark effect (VSE) spectroscopy has become one of the most important experimental approaches to determine the strength of noncovalent, electrostatic interactions in chemistry and biology and to quantify their influence on structure and reactivity. Nitriles (C≡N) have been widely used as VSE probes, but their application has been complicated by an anomalous hydrogen bond (HB) blueshift which is not encompassed within the VSE framework. We present an empirical model describing the anomalous HB blueshift in terms of H-bonding geometry, i.

View Article and Find Full Text PDF

Understanding the origin and effect of the confinement of molecules and transition states within the micropores of a zeolite can enable targeted design of such materials for catalysis, gas storage, and membrane-based separations. Linear correlations of the thermodynamic parameters of molecular adsorption in zeolites have been proposed; however, their generalizability across diverse molecular classes and zeolite structures has not been established. Here, using molecular simulations of >3500 combinations of adsorbates and zeolites, we show that linear trends hold in many cases; however, they collapse for highly confined systems.

View Article and Find Full Text PDF

Machine-Learning-Aided Engineering Hemoglobin as Carbene Transferase for Catalyzing Enantioselective Olefin Cyclopropanation.

JACS Au

December 2024

Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China.

In this study, we developed a machine-learning-aided protein design strategy for engineering hemoglobin (VHb) as carbene transferase. A Natural Language Processing (NLP) model was used for the first time to construct an algorithm (EESP, enzyme enantioselectivity score predictor) and predict the enantioselectivity of VHb. We identified critical amino acid residue sites by molecular docking and established a simplified mutation library by site-saturated mutagenesis.

View Article and Find Full Text PDF

Background: Surgery is the best approach to treat endometrial cancer (EC); however, there is currently a deficiency in effective scoring systems for predicting EC recurrence post-surgical resection. This study aims to develop a clinicopathological-inflammatory parameters-based nomogram to accurately predict the postoperative recurrence-free survival (RFS) rate of EC patients.

Methods: A training set containing 1068 patients and an independent validation set consisting of 537 patients were employed in this retrospective study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!