A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CRX haploinsufficiency compromises photoreceptor precursor translocation and differentiation in human retinal organoids. | LitMetric

CRX haploinsufficiency compromises photoreceptor precursor translocation and differentiation in human retinal organoids.

Stem Cell Res Ther

Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.

Published: December 2023

Background: The CRX-associated autosomal dominant retinopathies suggest a possible pathogenic mechanism of gene haploinsufficiency. However, based on reported human patient cases and studies with mouse models, it is hard to confirm the specific weight of haploinsufficiency in pathogenesis due to the interspecies gaps between gene expression and function.

Methods: We created monoallelic CRX by replacing one allele with tdTomato in human embryonic stem cells (hESCs) and subsequently dissect pathogenesis in hESCs-derived retinal organoids. We used transcriptome and immunofluorescence analyses to dissect phenotypic differences between CRX-monoallelic knockout and control wildtype organoids. For location analysis of CRX cells, a CRX-expression-tracing system was constructed in control hESCs. We implemented long-term live-cell imaging to describe the translocation of CRX cells between two groups in early organoid differentiation. The expression pattern of these dynamic differences was validated using RNA-seq and immunofluorescence assays.

Results: We identified delayed differentiation of outer nuclear layer (ONL) stratification along with thinner ONL, serious loss of photoreceptor outer segments, as well as downregulated expression of gene for phototransduction and inner/outer segment formation. By live-cell imaging and immunostaining, we observed the overtension of actomyosin network and the arrested translocation of monoallelic CRX cells in the early stage of retinal differentiation.

Conclusions: We confirmed that gene haploinsufficiency is the mechanism for the dominant pathogenicity of CRX and discovered that CRX regulated postmitotic photoreceptor precursor translocation in addition to its specification of photoreceptor cell fates during human retinal development. These findings revealed a new underlying mechanism of CRX dominant pathogenesis and provided a new clue for the treatment of CRX-associated human retinopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696917PMC
http://dx.doi.org/10.1186/s13287-023-03590-3DOI Listing

Publication Analysis

Top Keywords

crx cells
12
crx
8
photoreceptor precursor
8
precursor translocation
8
human retinal
8
retinal organoids
8
gene haploinsufficiency
8
monoallelic crx
8
live-cell imaging
8
human
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!