Chemogenetic inhibition of locus coeruleus to rostromedial tegmental nucleus noradrenergic pathway increases light cycle ethanol drinking in male and female mice and blunts ethanol-induced CTA.

Neuropharmacology

Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA. Electronic address:

Published: February 2024

AI Article Synopsis

  • The study investigates the effects of silencing the noradrenergic pathway from the locus coeruleus (LC) to the rostromedial tegmental nucleus (RMTg) in mice and its impact on binge-like ethanol drinking and conditioned taste aversion (CTA).
  • Inhibition of this pathway did not affect ethanol drinking in a dark-drinking test but significantly increased intake during light hours and reduced the aversive response to ethanol.
  • The findings suggest that the LC to RMTg noradrenergic circuit plays a critical role in regulating excessive ethanol consumption and its associated behaviors.

Article Abstract

We recently showed that chemogenetic activation of the locus coeruleus (LC) to the rostromedial tegmental nucleus (RMTg) noradrenergic (NE) pathway significantly blunted binge-like ethanol drinking and induced aversive-like behaviors in mice. The aim of the present study is to determine if silencing this TH + LC → RMTg noradrenergic pathway promotes increased levels of binge-like ethanol intake and reduced ethanol-induced conditioned taste aversion (CTA). To this end, both male and female TH-ires-cre mice on a C57BL/6 J background were cannulated in the RMTg and injected in the LC with rAVV viruses that encode cre-dependent Gi-expressing designer receptor exclusively activated by designer drugs (DREADDs), or its control, to directly control the activity of NE neurons. Inhibition of the LC to RMTg pathway had no effect on the binge-ethanol drinking in a "drinking-in-the-dark" (DID) paradigm. However, when using this paradigm during the light cycle, silencing of this circuit significantly increased ethanol intake without altering sucrose drinking. Moreover, we found that inhibition of this circuit significantly attenuated an ethanol-induced CTA. In addition, when compared to control animals, pairing RMTg-directed Clozapine N-oxide (CNO) with an i.p. injection of 1.5 g/kg ethanol reduced c-Fos activation in the LC, and increased c-Fos expression in the ventral tegmental area (VTA) in Gi-expressing mice. Our data show that inhibition of the TH + LC to the RMTg pathway significantly increased ethanol drinking as well as attenuated ethanol-induced CTA, supporting the involvement of the LC to RMTg noradrenergic circuit as an important protective mechanism against excessive ethanol consumption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829485PMC
http://dx.doi.org/10.1016/j.neuropharm.2023.109809DOI Listing

Publication Analysis

Top Keywords

noradrenergic pathway
12
ethanol drinking
12
ethanol-induced cta
12
rmtg noradrenergic
12
locus coeruleus
8
coeruleus rostromedial
8
rostromedial tegmental
8
tegmental nucleus
8
light cycle
8
male female
8

Similar Publications

Noradrenergic inputs from the locus coeruleus to anterior piriform cortex and the olfactory bulb modulate olfactory outputs.

Nat Commun

January 2025

Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Norepinephrine (NE) released from locus coeruleus (LC) noradrenergic (NAergic) neurons plays a pivotal role in the regulation of olfactory behaviors. However, the precise circuits and receptor mechanisms underlying this function are not well understood. Here, in DBH-Cre mice model, we show that LC NAergic neurons project directly to both anterior piriform cortex (aPC) and the olfactory bulb (OB).

View Article and Find Full Text PDF

Background: Paclitaxel is a widely used anticancer drug for ovarian, lung, breast, and stomach cancers; however, its clinical use is often limited by the side effects of peripheral neuropathy. This study evaluated the effects of () extract and its active metabolite, α-cyperone, on paclitaxel-induced neuropathic pain.

Methods: The oral administration of extract at doses of 500 mg/kg and intraperitoneal administration of α-cyperone at doses of 480 and 800 μg/kg prevented both the development of cold and mechanical pain.

View Article and Find Full Text PDF

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by developmental impairments, inattention, motor hyperactivity, and impulsivity. Currently, there is no effective intervention that can completely cure it. One of the pathogenic mechanisms of ADHD involves abnormalities in the norepinephrine (NE) pathway within the prefrontal cortex (PFC).

View Article and Find Full Text PDF

Transient exposure to ketamine can trigger lasting changes in behavior and mood. We found that brief ketamine exposure causes long-term suppression of futility-induced passivity in larval zebrafish, reversing the "giving-up" response that normally occurs when swimming fails to cause forward movement. Whole-brain imaging revealed that ketamine hyperactivates the norepinephrine-astroglia circuit responsible for passivity.

View Article and Find Full Text PDF

Cervical spinal cord injury usually leads to cardiorespiratory dysfunction due to interruptions of the supraspinal pathways innervating the phrenic motoneurons and thoracic sympathetic preganglionic neurons. Although clinical guidelines recommend maintaining the mean arterial pressure within 85-90 mmHg during the first week of injury, there is no pre-clinical evidence from animal models to prove the therapeutic efficacy of hemodynamic management. Accordingly, the present study was designed to investigate the therapeutic efficacy of hemodynamic management in rats with cervical spinal cord contusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!