Properties of paraoxon, such as poor water solubility, low rate of natural decomposition, ability to accumulate in soil and wastewater, lead to the fact that paraoxon is found in various agricultural products and textiles. In this regard, the search for effective ways of paraoxon degradation becomes an extremely urgent problem, which can be solved by creating catalysts by mimicking paraxonase. In this work, a complex of physicochemical methods was used to study the supramolecular interactions of sodium alginate, which has a calcium-binding ability similar to paraxonase, with viologen calix[4]resorcinol and to reveal the nature of the intermolecular interactions between them resulting in the spontaneous formation of nanoparticles. Before proceeding to the investigation of the binding ability of obtained nanoparticles to paraoxon, the encapsulating effect of nanoparticles on a number of model substrates of different solubility (doxorubicin hydrochloride, quercetin and oleic acid) was studied. The kinetics of paraoxon hydrolysis reaction using these nanoparticles was studied at room temperature in an aqueous medium by spectrophotometric method. The rate of this reaction increases with increasing concentration of stable nanoparticles having hydrophobic domains that ensure paraoxon immobilization. The results obtained allow considering the supramolecular polysaccharide/calixarene system as an effective biomimetic catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128578DOI Listing

Publication Analysis

Top Keywords

sodium alginate
8
viologen calix[4]resorcinol
8
room temperature
8
paraoxon
7
nanoparticles
5
supramolecular catalyst
4
catalyst based
4
based sodium
4
alginate viologen
4
calix[4]resorcinol room
4

Similar Publications

Alginate-Based Hydrogels with Amniotic Membrane Stem Cells for Wound Dressing Application.

Stem Cells Cloning

January 2025

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.

Objective: Chronic wounds are a common clinical problem that necessitate the exploration of novel regenerative therapies. We report a method to investigate the in vitro wound healing capacity of an innovative biomaterial, which is based on amniotic membrane-derived stem cells (AMSCs) embedded in an alginate hydrogel matrix. The aim of this study was to prepare an sodium alginate-based hydrogel, cross-linked calcium chloride (CaCl with the active ingredient AMSC (AMSC/Alg-H) and to evaluate its in vitro effectiveness for wound closure.

View Article and Find Full Text PDF

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

Biological fouling seriously jeopardizes the development of the marine industry. Although hydrogels, as a kind of state-of-the-art antifouling material, have received wide attention, their mechanical strength is still relatively weak, and the synergistic antifouling method is comparatively single, thus limiting the performance of hydrogels. Here, a zwitterionic sulfobetaine methacrylate (SBMA)-acrylamide (AM)/sodium alginate (SA) double-network (DN) antifouling hydrogel with superb antifouling ability and outstanding mechanical properties was prepared by grafting MXene/Ag (M/Ag) and the powerful biocide polyhexamethylene biguanide (PHMB).

View Article and Find Full Text PDF

Inflammation Targeting-Triggered Healing Hydrogel for In Situ Reconstruction of Colonic Mucosa.

Adv Sci (Weinh)

January 2025

Collaborative Innovation Center for Clinical and Translational Science, Department of Pharmacology and Chemical Biology, & Institute of Molecular Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China.

Inflammatory bowel disease (IBD) is characterized by intestinal mucosal damage that exacerbates inflammation and promotes disease recurrence. Although hydrogel-based therapies have shown potential for mucosal repair, challenges remain due to inadequate targeting and low hydrogel density, leading to ongoing infiltration of harmful substances and delayed mucosal healing. In this study, an inflammation-targeting-triggered healing hydrogel (ITTH hydrogel) is developed, composed of polyvinyl alcohol-alginate microgels (PALMs) and a cyclodextrin polymer crosslinker (CPC).

View Article and Find Full Text PDF

Highly compressible lamellar graphene/cellulose/sodium alginate aerogel via bidirectional freeze-drying for flexible pressure sensor.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!