Chemical upcycling of PVC-containing plastic wastes by thermal degradation and catalysis in a chlorine-rich environment.

Environ Pollut

Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea. Electronic address:

Published: February 2024

Chlorine (Cl)-containing chemicals, including hydrogen chloride, generated during thermal degradation of polyvinyl chloride (PVC) and corresponding mixture impede the chemical recycling of PVC-containing plastic wastes. While upgrading plastic-derived vapors, the presence of Cl-containing chemicals may deactivate the catalysts. Accordingly, herein, catalytic upgrading of pyrolysis vapor prepared from a mixture of PVC and polyolefins is performed using a fixed-bed reactor comprising zeolites. Among the H-forms of zeolites (namely, ZSM-5, Y, β, and chabazite) used in this study, a higher yield of gas products composed of hydrocarbons with lower carbon numbers is obtained using H-ZSM-5, thus indicating further decomposition of the pyrolysis vapor to C-C hydrocarbons on it. Although the formation of aromatic compounds is better on H-ZSM-5, product distributions can be adjusted by further modifying the acidic properties via the alteration of the Si/Al molar ratio, and maximum yields of C-C compounds (60.8%) and olefins (64.7%) are achieved using a Si/Al molar ratio of 50. Additionally, metal ion exchange on H-ZSM-5 is conducted, and upgrading of PVC-containing waste-derived vapor to aromatic chemicals and small hydrocarbon molecules was successfully performed using Co-substituted H-ZSM-5. It reveals that the highest yield of gas products on 1.74 wt% cobalt (Co)-substituted H-ZSM-5 is acquired via the selection of an appropriate metal and metal ion concentration adjustment. Nevertheless, introduction of excess Co into the H-ZSM-5 surface decreases the cracking activity, thereby implying that highly distributed Co is required to achieve excellent cracking activity. The addition of Co also adjusted the acid types of H-ZSM-5, and more Lewis acid sites compared to Brønsted acid sites selectively produced olefins and naphthenes over paraffins and aromatics. The proposed approach can be a feasible process to produce valuable petroleum-replacing chemicals from Cl-containing mixed plastic wastes, contributing to the closed loops for upcycling plastic wastes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.123074DOI Listing

Publication Analysis

Top Keywords

plastic wastes
16
pvc-containing plastic
8
thermal degradation
8
cl-containing chemicals
8
pyrolysis vapor
8
yield gas
8
gas products
8
si/al molar
8
molar ratio
8
metal ion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!