Objectives: This in vitro study aimed to evaluate the cell viability and expression of proteins related to angiogenesis, adhesion, and cell survival (vascular endothelial growth factor, paxillin, vinculin, fibronectin, and protein kinase B) in gingival fibroblasts that were cultured on titanium discs treated with or without nanohydroxyapatite and exposed to platelet-rich fibrin (PRF)-conditioned medium.

Methods: To obtain the conditioned medium, the PRF membranes were prepared and incubated for 48 h in a culture medium without fetal bovine serum. Analyses were performed at 24 and 48 h for the cells cultured on machined-titanium discs or surfaces treated with nanohydroxyapatite in a control medium or PRF-conditioned medium, resulting in four experimental groups (CT-TI, CT-NANO, PRF-TI, and PRF-NANO).

Results: A decrease in the viability of the gingival fibroblasts was not observed in any of the experimental groups. The PRF-NANO group showed significantly higher immunoexpression of paxillin and AKT at 24 and 48 h (p < 0.01). The same result was observed for vinculin expression at 24 h (p < 0.001). The expression of fibronectin at 48 h and VEGF at 24 and 48 h was significantly higher when the cells were exposed to the PRF-conditioned medium, regardless of the disc surface (p < 0.05).

Conclusion: Gingival fibroblasts cultured on a nanohydroxyapatite-treated surface and in a PRF-conditioned medium showed a greater expression of proteins modulating adhesion, angiogenesis, and cell survival. Our results may contribute to the understanding of the mechanisms related to peri-implant soft tissue sealing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.job.2023.11.008DOI Listing

Publication Analysis

Top Keywords

gingival fibroblasts
12
platelet-rich fibrin
8
expression proteins
8
fibroblasts cultured
8
cultured titanium
8
treated nanohydroxyapatite
8
experimental groups
8
fibrin stimulates
4
stimulates proliferation
4
proliferation expression
4

Similar Publications

A photo-thermal dual crosslinked chitosan-based hydrogel membrane for guided bone regeneration.

Int J Biol Macromol

January 2025

Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China. Electronic address:

Alveolar bone defects caused by inflammation or trauma jeopardize patients' oral functions. Guided bone regeneration (GBR) is widely used in repairing periodontal tissue, with barrier membranes play a crucial role in preserving the bone regeneration space. In this study, an injectable dual-crosslinked hydrogel was developed to improve the existing barrier membranes in flexibility and functionality.

View Article and Find Full Text PDF

Peri-implantitis associated with dental implants shares characteristics with destructive periodontal diseases. Both conditions are multifactorial and strongly correlated with the presence of microorganisms surrounding the prostheses or natural dentition. This study aimed to evaluate the antimicrobial activity and toxicity of a mucoadhesive hydrogel functionalized with aminochalcone (HAM-15) against Aggregatibacter actinomycetemcomitans, Fusobacterium periodonticum, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Candida albicans.

View Article and Find Full Text PDF

Objective:  Oral squamous cell carcinoma (OSCC) is the prevailing type of oral cancer, representing poor prognosis and elevated mortality rates. Major risk factors for OSCC include the use of tobacco products, alcohol consumption, betel quid chewing, and genetic mutation. is traditionally consumed by cancer patients to fight against tumor growth.

View Article and Find Full Text PDF

Oral cell lysates reduce osteoclastogenesis in murine bone marrow cultures.

Cytotechnology

February 2025

Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.

Mechanical and thermal cell damage can occur due to invasive procedures related to drilling, the insertion of dental implants, and periodontal treatments. Necrotic cells release the content of their cytoplasm and membrane fragments, thereby signaling the need for repair, which includes bone resorption by osteoclasts and inflammation. Here we screened lysates from human gingival fibroblasts, HSC2 and TR146 oral squamous carcinoma cell lines, as well as murine IDG-SW3 osteocytic and RAW264.

View Article and Find Full Text PDF

RNA Sequencing Revealed a Weak Response of Gingival Fibroblasts Exposed to Hyaluronic Acid.

Bioengineering (Basel)

December 2024

Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.

Hyaluronic acid was proposed to support soft tissue recession surgery and guided tissue regeneration. The molecular mechanisms through which hyaluronic acid modulates the response of connective tissue cells remain elusive. To elucidate the impact of hyaluronic acid on the connective tissue cells, we used bulk RNA sequencing to determine the changes in the genetic signature of gingival fibroblasts exposed to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!