Skyrmion transport and annihilation in funnel geometries.

J Phys Condens Matter

Departamento de Física, Faculdade de Ciências, Unesp-Universidade Estadual Paulista, CP 473, 17033-360 Bauru, SP, Brazil.

Published: December 2023

Using atomistic simulations, we have investigated the transport and annihilation of skyrmions interacting with a funnel array under a current applied perpendicular to the funnel axis. We find that transport without annihilation is possible at low currents, when the motion is dominated by skyrmion-skyrmion interactions and skyrmions push each other through the funnel opening. Skyrmion annihilation occurs for higher currents when skyrmions in the upper half of the sample exert pressure on skyrmions in the bottom half of the sample due to the external current. Upon interacting with the funnel wall, the skyrmions undergo a size reduction that makes it easier for them to pass through the funnel opening. We find five phases as a function of the applied current and the size of the funnel opening: (i) pinned, (ii) transport without annihilation, (iii) transport with annihilation, (iv) complete annihilation, and (v) a reentrant pinning phase that only occurs for very narrow openings. Our findings provide insight into how to control skyrmion transport using funnel arrays by delineating regimes in which transport of skyrmions is possible as well as the conditions under which annihilation occurs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad1218DOI Listing

Publication Analysis

Top Keywords

transport annihilation
20
funnel opening
12
skyrmion transport
8
annihilation
8
funnel
8
interacting funnel
8
annihilation occurs
8
half sample
8
transport
6
skyrmions
6

Similar Publications

Quantum materials governed by emergent topological fermions have become a cornerstone of physics. Dirac fermions in graphene form the basis for moiré quantum matter and Dirac fermions in magnetic topological insulators enabled the discovery of the quantum anomalous Hall (QAH) effect. By contrast, there are few materials whose electromagnetic response is dominated by emergent Weyl fermions.

View Article and Find Full Text PDF

Ultra-low power-consumption OLEDs via phosphor-assisted thermally-activated-delayed-fluorescence-sensitized narrowband emission.

Nat Commun

January 2025

Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, China.

The further success of OLED beyond conventional low-luminance display applications has been hampered by the low power efficiency (PE) at high luminance. Here, we demonstrate the strategic implementation of an exceptionally high-PE, high-luminance OLED using a phosphor-assisted thermally-activated-delayed-fluorescence (TADF)-sensitized narrowband emission. On the basis of a TADF sensitizing-host possessing a fast reverse intersystem crossing, an anti-aggregation-caused-quenching character and a good bipolar charge-transporting ability, this design achieves not only a 100% exciton radiative consumption with decay times mainly in the sub-microsecond regime to mitigate exciton annihilations for nearly roll-off-free external quantum efficiency, but also narrowband emission with both small energetic loss during energy transfer and resistive loss with increasing luminance.

View Article and Find Full Text PDF

Ge Epitaxy at Ultralow Growth Temperatures Enabled by a Pristine Growth Environment.

ACS Appl Electron Mater

December 2024

Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria.

Germanium (Ge), the next-in-line group-IV material, bears great potential to add functionality and performance to next-generation nanoelectronics and solid-state quantum transport based on silicon (Si) technology. Here, we investigate the direct epitaxial growth of two-dimensional high-quality crystalline Ge layers on Si deposited at ultralow growth temperatures ( = 100-350 °C) and pristine growth pressures (≲10 mbar). First, we show that a decreasing does not degrade the crystal quality of homoepitaxial Ge/Ge(001) by comparing the point defect density using positron annihilation lifetime spectroscopy.

View Article and Find Full Text PDF

Triplet-triplet annihilation photon upconversion (TTA-UC) combines the energy of two photons to provide one of higher energy that can be used to drive photochemical or photophysical processes. TTA-UC proceeds at high efficiencies in dilute solution, but in solid state the efficiency drastically reduces. This is because exciton diffusion, compared to molecular diffusion in solid annihilator films, suffers concentration induced quenching, undermining efficient emission.

View Article and Find Full Text PDF

Molecular layer deposition (MLD) of ethylene glycol-alucone (EG-alucone) on the Nafion cation exchange membrane is investigated to understand its impact on the morphology of the composite and consequent enhancement of ion transport selectivity. X-ray photoelectron spectroscopy, scanning electron microscopy, Density functional theory, and Doppler broadening positron annihilation spectroscopy are comprehensively employed to examine the morphology of the composite, particularly the engineered interface between EG-alucone and Nafion. These studies reveal the diffusion and subsequent reaction of the Lewis-acidic trimethyl aluminum precursor with the polymer substrate during MLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!