Promising advances in molecular medicine have promoted the urgent requirement for reliable and sensitive diagnostic tools. Electronic biosensing devices based on field-effect transistors (FETs) exhibit a wide range of benefits, including rapid and label-free detection, high sensitivity, easy operation, and capability of integration, possessing significant potential for application in disease screening and health monitoring. In this perspective, the tremendous efforts and achievements in the development of high-performance FET biosensors in the past decade are summarized, with emphasis on the interface engineering of FET-based electrical platforms for biomolecule identification. First, an overview of engineering strategies for interface modulation and recognition element design is discussed in detail. For a further step, the applications of FET-based electrical devices for in vitro detection and real-time monitoring in biological systems are comprehensively reviewed. Finally, the key opportunities and challenges of FET-based electronic devices in biosensing are discussed. It is anticipated that a comprehensive understanding of interface engineering strategies in FET biosensors will inspire additional techniques for developing highly sensitive, specific, and stable FET biosensors as well as emerging designs for next-generation biosensing electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202306252 | DOI Listing |
Sensors (Basel)
January 2025
Department of Computer Science, Faculty of Sciences and Humanities Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.
Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul, 04620, Republic of Korea. Electronic address:
Background: Sarcopenia, which is associated with many pathways and molecular mechanisms, not only deteriorates the quality of life in old age but is also linked to various diseases. The ratio between cortisol and dehydroepiandrosterone sulfate (DHEAS) was utilized as a candidate method to diagnose sarcopenia. The hormones can fluctuate in concentration throughout the day, so monitoring the ratio between the two hormones is necessary.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.
Field-effect transistor (FET) biosensors have significantly attracted interest across various disciplines because of their high sensitivity, time-saving, and label-free characteristics. However, it remains a grand challenge to interface the FET biosensor with complex liquid media. Unlike standard liquid electrolytes containing purified protein content, directly exposing FET biosensors to complex biological fluids introduces significant sensing noise, which is caused by the abundance of nonspecific proteins, viruses, and bacteria that adsorb to the biosensor surfaces.
View Article and Find Full Text PDFLab Chip
January 2025
State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
Nanoparticles have become widely used materials in various fields, yet their mechanism of action at the cellular level after entering the human body remains unclear. Accurately observing the effect of nanosize dimensions on particle internalization and toxicity in cells is crucial, particularly under the conditions of biological activity. With the aim of helping to study the interactions between nanoparticles of varying sizes and active cell membranes, we propose a flexible biosensor system based on a field effect transistor (FET).
View Article and Find Full Text PDFACS Sens
January 2025
State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!