Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The market for illicit drugs has been reshaped by the emergence of more than 1100 new psychoactive substances (NPS) over the past decade, posing a major challenge to the forensic and toxicological laboratories tasked with detecting and identifying them. Tandem mass spectrometry (MS/MS) is the primary method used to screen for NPS within seized materials or biological samples. The most contemporary workflows necessitate labor-intensive and expensive MS/MS reference standards, which may not be available for recently emerged NPS on the illicit market. Here, we present NPS-MS, a deep learning method capable of accurately predicting the MS/MS spectra of known and hypothesized NPS from their chemical structures alone. NPS-MS is trained by transfer learning from a generic MS/MS prediction model on a large data set of MS/MS spectra. We show that this approach enables a more accurate identification of NPS from experimentally acquired MS/MS spectra than any existing method. We demonstrate the application of NPS-MS to identify a novel derivative of phencyclidine (PCP) within an unknown powder seized in Denmark without the use of any reference standards. We anticipate that NPS-MS will allow forensic laboratories to identify more rapidly both known and newly emerging NPS. NPS-MS is available as a web server at https://nps-ms.ca/, which provides MS/MS spectra prediction capabilities for given NPS compounds. Additionally, it offers MS/MS spectra identification against a vast database comprising approximately 8.7 million predicted NPS compounds from DarkNPS and 24.5 million predicted ESI-QToF-MS/MS spectra for these compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733899 | PMC |
http://dx.doi.org/10.1021/acs.analchem.3c02413 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!