A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Energy Matching Vessel Segmentation Framework in 3-D Medical Images. | LitMetric

Accurate vascular segmentation from High Resolution 3-Dimensional (HR3D) medical scans is crucial for clinicians to visualize complex vasculature and diagnose related vascular diseases. However, a reliable and scalable vessel segmentation framework for HR3D scans remains a challenge. In this work, we propose a High-resolution Energy-matching Segmentation (HrEmS) framework that utilizes deep learning to directly process the entire HR3D scan and segment the vasculature to the finest level. The HrEmS framework introduces two novel components. Firstly, it uses the real-order total variation operator to construct a new loss function that guides the segmentation network to obtain the correct topology structure by matching the energy of the predicted segment to the energy of the manual label. This is different from traditional loss functions such as dice loss, which matches the pixels between predicted segment and manual label. Secondly, a curvature-based weight-correction module is developed, which directs the network to focus on crucial and complex structural parts of the vasculature instead of the easy parts. The proposed HrEmS framework was tested on three in-house multi-center datasets and three public datasets, and demonstrated improved results in comparison with the state-of-the-art methods using both topology-relevant and volumetric-relevant metrics. Furthermore, a double-blind assessment by three experienced radiologists on the critical points of the clinical diagnostic processes provided additional evidence of the superiority of the HrEmS framework.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2023.3339204DOI Listing

Publication Analysis

Top Keywords

hrems framework
16
vessel segmentation
8
segmentation framework
8
predicted segment
8
manual label
8
framework
6
segmentation
5
energy matching
4
matching vessel
4
framework 3-d
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!