Importance: Antiamyloid immunotherapies against Alzheimer disease (AD) are emerging. Scalable, cost-effective tools will be needed to identify amyloid β (Aβ)-positive patients without an advanced stage of tau pathology who are most likely to benefit from these therapies. Blood-based biomarkers might reduce the need to use cerebrospinal fluid (CSF) or positron emission tomography (PET) for this.
Objective: To evaluate plasma biomarkers for identifying Aβ positivity and stage of tau accumulation.
Design, Setting, And Participants: The cohort study (BioFINDER-2) was a prospective memory-clinic and population-based study. Participants with cognitive concerns were recruited from 2017 to 2022 and divided into a training set (80% of the data) and test set (20%).
Exposure: Baseline values for plasma phosphorylated tau 181 (p-tau181), p-tau217, p-tau231, N-terminal tau, glial fibrillary acidic protein, and neurofilament light chain.
Main Outcomes And Measures: Performance to classify participants by Aβ status (defined by Aβ-PET or CSF Aβ42/40) and tau status (tau PET). Number of hypothetically saved PET scans in a plasma biomarker-guided workflow.
Results: Of a total 912 participants, there were 499 males (54.7%) and 413 females (45.3%), and the mean (SD) age was 71.1 (8.49) years. Among the biomarkers, plasma p-tau217 was most strongly associated with Aβ positivity (test-set area under the receiver operating characteristic curve [AUC] = 0.94; 95% CI, 0.90-0.97). A 2-cut-point procedure was evaluated, where only participants with ambiguous plasma p-tau217 values (17.1% of the participants in the test set) underwent CSF or PET to assign definitive Aβ status. This procedure had an overall sensitivity of 0.94 (95% CI, 0.90-0.98) and a specificity of 0.86 (95% CI, 0.77-0.95). Next, plasma biomarkers were used to differentiate low-intermediate vs high tau-PET load among Aβ-positive participants. Plasma p-tau217 again performed best, with the test AUC = 0.92 (95% CI, 0.86-0.97), without significant improvement when adding any of the other plasma biomarkers. At a false-negative rate less than 10%, the use of plasma p-tau217 could avoid 56.9% of tau-PET scans needed to identify high tau PET among Aβ-positive participants. The results were validated in an independent cohort (n = 118).
Conclusions And Relevance: This study found that algorithms using plasma p-tau217 can accurately identify most Aβ-positive individuals, including those likely to have a high tau load who would require confirmatory tau-PET imaging. Plasma p-tau217 measurements may substantially reduce the number of invasive and costly confirmatory tests required to identify individuals who would likely benefit from antiamyloid therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696515 | PMC |
http://dx.doi.org/10.1001/jamaneurol.2023.4596 | DOI Listing |
Background: Phosphorylated tau (p-tau) 217 is a promising blood biomarker for Alzheimer's disease (AD). However, most p-tau217 assays have been validated solely in ethylenediaminetetraacetic acid (EDTA) plasma, leaving the clinical applicability of serum p-tau217 largely unexplored despite serum being a preferred matrix in many clinical laboratories. To address this gap, we compared p-tau217 concentrations and diagnostic performances in matched plasma and serum samples using four research-use-only assays, including three from commercial sources i.
View Article and Find Full Text PDFNat Commun
January 2025
Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
Different forms of phosphorylated tau (p-tau) have shown strong potential as Alzheimer's disease (AD) biomarkers in both cerebrospinal fluid (CSF) and plasma. We hypothesized that p-tau proteoforms simultaneously phosphorylated at two different sites may have an increased diagnostic value compared with tau phosphorylated at a single site. Here, we developed two immunoassays detecting CSF and plasma tau simultaneously phosphorylated at both T181 and T231 (p-tau181&231) and at T217 and T231 (p-tau217&231).
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
Neurology
January 2025
Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
Background And Objectives: To compare the diagnostic performance of an immunoassay for plasma concentrations of phosphorylated tau (p-tau) 217 with visual assessments of fluorine-18 fluorodeoxyglucose [F]FDG-PET in individuals who meet appropriate use criteria for Alzheimer dementia (AD) biomarker assessments.
Methods: We performed a retrospective analysis of individuals with early-onset (age <65 years at onset) and/or atypical dementia (features other than memory at onset), who were evaluated at a tertiary care memory clinic. All participants underwent measurements of CSF biomarkers (Aβ42, p-tau181, and total tau levels), as well as [F]FDG-PET scans, amyloid-PET scans, and plasma p-tau217 quantifications.
Alzheimers Dement
December 2024
Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, New York, USA.
Our review summarizes the diagnostic accuracy of plasma and cerebrospinal fluid (CSF) phosphorylated tau 217 (p-tau217) in detecting amyloid and tau pathology on positron emission tomography (PET). We systematically reviewed studies that reported the diagnostic accuracy of plasma and CSF p-tau217, searching MEDLINE/PubMed, Scopus, and Web of Science through August 2024. The accuracy of p-tau217 in predicting amyloid and tau pathology on PET was evaluated in 30 studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!