A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast-Charging Performance of SiO-Based Anode for Lithium-Ion Batteries. | LitMetric

Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast-Charging Performance of SiO-Based Anode for Lithium-Ion Batteries.

Nanomicro Lett

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.

Published: December 2023

Influence of interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time. The mitigation of interface polarization is precisely revealed by the combination of 2D modeling simulation and Cryo-TEM observation, which can be attributed to a higher fraction formation of conductive inorganic species in bilayer SEI, and primarily contributes to a linear decrease in ionic diffusion energy barrier. The improved stress dissipation presented by AFM and Raman shift is critical for the linear reduction in electrode residual stress and thickness swelling. Progress in the fast charging of high-capacity silicon monoxide (SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion. The construction of an interface conductive network effectively addresses the aforementioned problems; however, the impact of its quality on lithium-ion transfer and structure durability is yet to be explored. Herein, the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time. 2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier. Furthermore, atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network, which is critical to the linear reduction of electrode residual stress. This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695911PMC
http://dx.doi.org/10.1007/s40820-023-01267-3DOI Listing

Publication Analysis

Top Keywords

conductive network
20
interface conductive
16
fast charging
12
fast-charging performance
8
influence interface
8
network ionic
8
ionic transport
8
transport mechanical
8
mechanical stability
8
stability fast
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!