We report the synthesis and operation of a molecular energy ratchet that transports a crown ether from solution onto a thread, along the axle, over a fluorophore, and off the other end of the thread back into bulk solution, all in response to a single pulse of a chemical fuel (CClCOH). The fluorophore is a pyrene residue whose fluorescence is normally prevented by photoinduced electron transfer (PET) to a nearby -methyltriazolium group. However, crown ether binding to the -methyltriazolium site inhibits the PET, switching on pyrene fluorescence under UV irradiation. Each pulse of fuel results in a single ratchet cycle of transient fluorescence (encompassing threading, transport to the -methyltriazolium site, and then dethreading), with the onset of the fluorescent time period determined by the amount of fuel in each pulse and the end-point determined by the concentration of the reagents for the disulfide exchange reaction. The system provides a potential alternative signaling approach for artificial molecular machines that read symbols from sequence-encoded molecular tapes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722508 | PMC |
http://dx.doi.org/10.1021/jacs.3c11290 | DOI Listing |
J Neurosci
January 2025
Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
Based on the activity of dopamine (DA) neurons during behavioral states, the DA system has long been thought to be foundational in regulating sleep-wake behavior; over the past decade advances in circuit manipulation and recording techniques have strengthened this perspective. Recently, several studies have demonstrated that DA release in regions of the limbic system is important in the promotion of REM sleep. Yet how DA dynamics change within bouts of sleep, how these changes are regulated, and whether they influence future state changes remains unclear.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
Pendant organic chromophores have been used to improve the photocatalytic performance of many metal-based photosensitizers, particularly in first-row metals, by increasing π conjugation in ligands and lowering the energy of the photoactive absorption band. Using a combination of spectroscopic studies and computational modeling, we rationalize the excited state dynamics of a Co(III) complex containing pendant pyrene moieties, , where = 1,1'-(4-(pyren-1-yl)pyridine-2,6-diyl)bis(3-methyl-1-imidazol-3-ium). displays higher visible absorptivity, and blue luminescence from pyrene singlet excited states compared with [ = 1,1'-(pyridine-2,6-diyl)bis(3-methyl-1-imidazol-3-ium)] in which the pyrene moiety is absent.
View Article and Find Full Text PDFElife
January 2025
Eikon Therapeutics Inc, Hayward, United States.
The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus of Mumbai University, Santacruz (E), Mumbai 400098, India.
Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!