Oxidative dimerization of aryl-substituted dithiafulvenes (Ar-DTFs) presents an efficient C-C bond forming method for the preparation of diverse redox-active π-conjugated molecules and conductive polymers. Previous experimental data indicated a reaction pathway in which direct combination of two Ar-DTF radical cations is a key step. However, mechanistic details about how Ar-DTF dimers are formed under different oxidation states have not yet been clearly established prior to this work. The assembly of two Ar-DTF molecules generates a vast conformational and configurational landscape, which is quite complex but fundamentally important for understanding the dimerization mechanism. To cast a deep insight into this aspect, we have performed density functional theory (DFT) calculations at the M06-2X/Def2-SVP level of theory to thoroughly investigate the potential energy surfaces (PESs) of various dimers of a phenyl-substituted dithiafulvene (Ph-DTF) in the mixed-valence radical cation and dication states. Key stationary points in these PESs, including minimum-energy conformers (π-dimers and σ-dimers) as well as the transition states connected to them, were examined and compared. We have also calculated the binding energies of these dimers to evaluate the energetic driving forces for their formation. Based on our computational results, the roles that various Ph-DTF dimers play in different pathways of oxidative dimerization have been clarified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp04122k | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.
Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 10120, Thailand.
A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States.
Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.
View Article and Find Full Text PDFJ Proteome Res
January 2025
School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States.
() utilizes heme as an iron source from the host during infection. Biliverdin beta and delta (BVIXβ and BVIXδ) are generated by HemO, specific to , while biliverdin alpha is generated from the bacterial BphO system and by mammalian heme oxygenases. Here, we have developed and characterized a quantitative LC-MS/MS assay for the separation of three endogenous isomers, BVIXα, BVIXβ, and BVIXδ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!