Anthelminthic Veterinary Medicines Interactions with the Soil Microbiota.

Chimia (Aarau)

Dept. Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Viopolis, Greece.

Published: November 2023

AI Article Synopsis

Article Abstract

Anthelminthics (AHs) are used to control gastrointestinal nematodes (GINs) in productive animals. They are rapidly excreted by animals, ending up in soil through direct deposition of animal dung or application of animal excreta as manures. Most environmental research on AHs has focused on their toxicity to aquatic organisms and soil fauna while their interactions with the soil microbiota, a key component of a functioning soil ecosystem, have been overlooked. In this article, we summarize current knowledge on the interactions of Ahs with the soil (micro) biota, we highlight recent evidence for the toxicity of AHs on soil microorganisms and discuss those results in the frame of the current environmental risk assessment (ERA) of veterinary medicines.

Download full-text PDF

Source
http://dx.doi.org/10.2533/chimia.2023.777DOI Listing

Publication Analysis

Top Keywords

veterinary medicines
8
interactions soil
8
soil microbiota
8
ahs soil
8
soil
7
anthelminthic veterinary
4
medicines interactions
4
microbiota anthelminthics
4
ahs
4
anthelminthics ahs
4

Similar Publications

In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.

View Article and Find Full Text PDF

RING finger protein 5 is a key anti-FMDV host factor through inhibition of virion assembly.

PLoS Pathog

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Foot-and-mouth disease virus (FMDV) are small, icosahedral viruses that cause serious clinical symptoms in livestock. The FMDV VP1 protein is a key structural component, facilitating virus entry. Here, we find that the E3 ligase RNF5 interacts with VP1 and targets it for degradation through ubiquitination at the lys200 of VP1, ultimately inhibiting virus replication.

View Article and Find Full Text PDF

Nb-FAR-1: A key developmental protein affects lipid droplet accumulation and cuticle formation in Nippostrongylus brasiliensis.

PLoS Negl Trop Dis

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.

Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.

View Article and Find Full Text PDF

Mucin Colocalizes with Influenza Virus and Preserves Infectivity in Deposited Model Respiratory Droplets.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

The stability of influenza virus in respiratory particles varies with relative humidity (RH) and protein content. This study investigated the decay, or loss of infectivity, of influenza A virus (IAV) in 1-μL respiratory droplets deposited on a surface with varying concentrations of mucin, one of the most abundant proteins in respiratory mucus, and examined the localization of virions within droplets. IAV remained stable at 0.

View Article and Find Full Text PDF

The anatomical innovation of sound-producing organs, which gives rise to a wide variety of sound signals, is one of the most fundamental factors leading to the explosive speciation of modern birds. Despite being a key clue to resolving the homology of sound-controlling muscles among birds, only few studies have explored the embryonic development of syringeal muscles. Using serial histological sections and immunohistochemistry, we described the three-dimensional anatomy and development of the cartilage, muscle, and innervation pattern of the tracheobronchi in three avian species: domestic fowls, cockatiels, and zebra finches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!