Many bacteriocins target the sugar transporter mannose phosphotransferase system (man-PTS) to exert their antibacterial activity. The elucidation in recent years of the structure of man-PTS has facilitated our understanding of how bacteriocins might interact with the receptor and which domains of the transporter are involved in bacteriocin resistance. Here, we show that missense mutations in the sugar-binding domain of the man-PTS not only impede the uptake of sugars but also prevent the antibacterial activity of the bacteriocins lactococcin A and garvicin Q.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783117PMC
http://dx.doi.org/10.1128/spectrum.03130-23DOI Listing

Publication Analysis

Top Keywords

lactococcin garvicin
8
missense mutations
8
mannose phosphotransferase
8
phosphotransferase system
8
antibacterial activity
8
mutants resistant
4
resistant lactococcin
4
garvicin reveal
4
reveal missense
4
mutations sugar
4

Similar Publications

Many bacteriocins target the sugar transporter mannose phosphotransferase system (man-PTS) to exert their antibacterial activity. The elucidation in recent years of the structure of man-PTS has facilitated our understanding of how bacteriocins might interact with the receptor and which domains of the transporter are involved in bacteriocin resistance. Here, we show that missense mutations in the sugar-binding domain of the man-PTS not only impede the uptake of sugars but also prevent the antibacterial activity of the bacteriocins lactococcin A and garvicin Q.

View Article and Find Full Text PDF

Mannose phosphotransferase system (Man-PTS) serves as a receptor for several bacteriocins in sensitive bacterial cells, namely subclass IIa bacteriocins (pediocin-like; pediocins) and subclass IId ones - lactococcin A (LcnA), lactococcin B (LcnB) and garvicin Q (GarQ). Here, to identify the receptor for three other narrow-spectrum subclass IId bacteriocins - garvicins A, B and C (GarA-C) Lactococcus garvieae mutants resistant to bacteriocins were generated and sequenced to look for mutations responsible for resistance. Spontaneous mutants had their whole genome sequenced while in mutants obtained by integration of pGhost9::ISS1 regions flanking the integration site were sequenced.

View Article and Find Full Text PDF

Mannose phosphotransferase system (Man-PTS) is the main mannose permease in bacteria but it is also a known receptor for subclass IIa bacteriocins (pediocin-like group) as well as subclass IId lactococcin A (LcnA) and lactococcin B (LcnB) (LcnA-like group). Subclass IIa bacteriocins exhibit a strong activity against Listeria spp. but they are not against Lactococcus spp.

View Article and Find Full Text PDF

An 'Upp'-turn in bacteriocin receptor identification.

Mol Microbiol

June 2014

Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; Alimentary Pharmabiotic Centre, Cork, Ireland.

Bacteriocins are gene encoded, bacterially produced antimicrobial peptides that have been the focus of considerable scientific interest but which are relatively underutilized by the food, veterinary and medical industries. One means via which the latter issue can be overcome is through a better understanding of how these peptides work or, more specifically, the identification of bacteriocin receptors and the subsequent application of such information to enhance the potency, and commercial value, of bacteriocins. For a time since the identification of lipid II and subunits of the mannose phosphotransferase system as receptors for several class I (modified) and class II (unmodified) bacteriocins, respectively, there were relatively few developments in this area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!