AI Article Synopsis

  • T cells play a critical role in hypertension, with high levels of legumain (LGMN) found in these cells; however, its specific contribution to high blood pressure is not fully understood.
  • Peripheral blood samples from hypertensive patients were analyzed, and various mouse models were used to investigate the effects of knocking out or inhibiting LGMN in T cells, revealing its importance in hypertension development.
  • Results showed that increased LGMN expression in CD4+ T cells correlates with higher blood pressure and reduced regulatory T cell function, indicating that LGMN contributes to hypertension by impairing Treg differentiation and functioning, which promotes inflammation.

Article Abstract

Background: T cells are central to the immune responses contributing to hypertension. LGMN (legumain) is highly expressed in T cells; however, its role in the pathogenesis of hypertension remains unclear.

Methods: Peripheral blood samples were collected from patients with hypertension, and cluster of differentiation (CD)4+ T cells were sorted for gene expression and Western blotting analysis. TLGMNKO (T cell-specific LGMN-knockout) mice (Lgmn/CD4), regulatory T cell (Treg)-specific LGMN-knockout mice (Lgmn/Foxp3), and RR-11a (LGMN inhibitor)-treated C57BL/6 mice were infused with Ang II (angiotensin II) or deoxycorticosterone acetate/salt to establish hypertensive animal models. Flow cytometry, 4-dimensional label-free proteomics, coimmunoprecipitation, Treg suppression, and in vivo Treg depletion or adoptive transfer were used to delineate the functional importance of T-cell LGMN in hypertension development.

Results: LGMN mRNA expression was increased in CD4+ T cells isolated from hypertensive patients and mice, was positively correlated with both systolic and diastolic blood pressure, and was negatively correlated with serum IL (interleukin)-10 levels. TLGMNKO mice exhibited reduced Ang II-induced or deoxycorticosterone acetate/salt-induced hypertension and target organ damage relative to wild-type (WT) mice. Genetic and pharmacological inhibition of LGMN blocked Ang II-induced or deoxycorticosterone acetate/salt-induced immunoinhibitory Treg reduction in the kidneys and blood. Anti-CD25 antibody depletion of Tregs abolished the protective effects against Ang II-induced hypertension in TLGMNKO mice, and LGMN deletion in Tregs prevented Ang II-induced hypertension in mice. Mechanistically, endogenous LGMN impaired Treg differentiation and function by directly interacting with and facilitating the degradation of TRAF6 (tumor necrosis factor receptor-associated factor 6) via chaperone-mediated autophagy, thereby inhibiting NF-κB (nuclear factor kappa B) activation. Adoptive transfer of LGMN-deficient Tregs reversed Ang II-induced hypertension, whereas depletion of TRAF6 in LGMN-deficient Tregs blocked the protective effects.

Conclusions: LGMN deficiency in T cells prevents hypertension and its complications by promoting Treg differentiation and function. Specifically targeting LGMN in Tregs may be an innovative approach for hypertension treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.123.322835DOI Listing

Publication Analysis

Top Keywords

ang ii-induced
20
ii-induced hypertension
12
hypertension
10
lgmn
9
cd4+ cells
8
mice
8
lgmn-knockout mice
8
adoptive transfer
8
tlgmnko mice
8
ii-induced deoxycorticosterone
8

Similar Publications

ClC-5 knockout mitigates angiotensin II-induced hypertension and endothelial dysfunction.

Life Sci

December 2024

Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China. Electronic address:

Aims: Impairment of nitric oxide (NO) production is a major cause of endothelial dysfunction and hypertension. ClC-5 Cl channel is abundantly expressed in the vascular endothelium. However, it remains unclear how it regulates endothelial function.

View Article and Find Full Text PDF

Background: The role of 1,25-dihydroxyvitamin-D3 (VitD) and sirtuin-1 (SIRT1) in mitigating pathological cardiac remodeling is well recognized. However, the potential for SIRT1 to mediate the inhibitory effects of VitD on angiotensin II (Ang II) -induced hypertrophy in H9c2 cardiomyoblasts remains unclear.

Methods: H9c2 cardiomyoblasts were exposed to Ang II or a combination of VitD and Ang II, both in the absence and presence of SIRT1-specific siRNA.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a cardiovascular disease with potentially fatal consequences, yet effective therapies to prevent its progression remain unavailable. Oxidative stress is associated with AAA development. Carbon dots have reactive oxygen species-scavenging activity, while green tea extract exhibits robust antioxidant properties.

View Article and Find Full Text PDF

Background: Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood.

Methods And Results: In this study, we employed a discovery-driven, unbiased approach.

View Article and Find Full Text PDF

Nox1/PAK1 is required for angiotensin II-induced vascular inflammation and abdominal aortic aneurysm formation.

Redox Biol

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, PR China. Electronic address:

NADPH oxidase 1 (Nox1) is a major isoform of Nox in vascular smooth muscle cells (VSMCs). VSMC activation and extracellular matrix (ECM) remodelling induce abdominal aortic aneurysm (AAA). In this study, we aim to determine the role of Nox1 in the progression of AAA and explore the underling mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!