Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The high Li-ion conductivity and wide electrochemical stability of Li-rich garnets (LiLaZrO) make them one of the leading solid electrolyte candidates for solid-state batteries. Dopants such as Al and Ga are typically used to enable stabilization of the high Li ion-conductive cubic phase at room temperature. Although numerous studies exist that have characterized the electrochemical properties, structure, and lithium diffusion in Al- and Ga-LLZO, the local structure and site occupancy of dopants in these compounds are not well understood. Two broad Al or Ga resonances are often observed with chemical shifts consistent with tetrahedrally coordinated Al/Ga in the magic angle spinning nuclear magnetic resonance (MAS NMR) spectra of both Al- and Ga-LLZO, which have been assigned to either Al and/or Ga occupying 24d and 96h/48g sites in the LLZO lattice or the different Al/Ga configurations that arise from different arrangements of Li around these dopants. In this work, we unambiguously show that the side products γ-LiAlO and LiGaO lead to the high frequency resonances observed by NMR spectroscopy and that both Al and Ga only occupy the 24d site in the LLZO lattice. Furthermore, it was observed that the excess Li often used during synthesis leads to the formation of these side products by consuming the Al/Ga dopants. In addition, the consumption of Al/Ga dopants leads to the tetragonal phase formation commonly observed in the literature, even after careful mixing of precursors. The side-products can exist even after sintering, thereby controlling the Al/Ga content in the LLZO lattice and substantially influencing the lithium-ion conductivity in LLZO, as measured here by electrochemical impedance spectroscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687891 | PMC |
http://dx.doi.org/10.1021/acs.chemmater.3c01831 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!