AI Article Synopsis

Article Abstract

On-going projects of the team are currently dealing with microbiota, xenobiotics, endocrine-disrupting chemicals (EDCs), obesity, inflammation and probiotics. The combination of diet, lifestyle and the exposure to dietary xenobiotics categorised into microbiota-disrupting chemicals (MDCs) could determine obesogenic-related dysbiosis. This modification of the microbiota diversity impacts on individual health-disease balance, inducing altered phenotypes. Specific, complementary, and combined prevention and treatments are needed to face these altered microbial patterns and the specific misbalances triggered. In this sense, searching for next-generation probiotics (NGP) by microbiota culturing, and focusing on their demonstrated, extensive scope and well-defined functions could contribute to counteracting and repairing the effects of obesogens. Therefore, EU-FORA project contributes to present a perspective through compiling information and key strategies for directed taxa searching and culturing of NGP that could be administered for preventing obesity and endocrine-related dysbiosis by (i) observing the differential abundance of specific microbiota taxa in obesity-related patients and analysing their functional roles, (ii) developing microbiota-directed strategies for culturing these taxa groups, and (iii) design and applying the successful compiled criteria from recent NGP clinical studies. New isolated or cultivable microorganisms from healthy gut microbiota specifically related to xenobiotic obesogens' neutralisation effects might be used as an NGP single strain or in consortia, both presenting functions and the ability to palliate metabolic-related disorders. Identification of holistic approaches for searching and using potential NGP, key aspects, the bias, gaps and proposals of solutions were also considered in this workplan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687753PMC
http://dx.doi.org/10.2903/j.efsa.2023.e211010DOI Listing

Publication Analysis

Top Keywords

next-generation probiotics
8
microbiota
6
ngp
5
microbiota analysis
4
analysis risk
4
risk assessment
4
assessment xenobiotic
4
xenobiotic exposure
4
exposure impact
4
impact dysbiosis
4

Similar Publications

regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice.

Gut Microbes

December 2025

Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA.

The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct strains might lead to functional differences in the gut microbiome.

View Article and Find Full Text PDF

Sjögren's syndrome (SS) is a prevalent systemic autoimmune disease with substantial impacts on women's health worldwide. Although oral Haemophilus parainfluenzae is reduced in SS, its significance remains unclear. This study aimed to elucidate the pathophysiological role of H.

View Article and Find Full Text PDF

Background: A. muciniphila (AKK) has attracted extensive research interest as a potential next-generation probiotics, but its role in intestinal pathology is remains unclear. Herein, this study was conducted to investigate the effects of A.

View Article and Find Full Text PDF

, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of abundance. Thus, and its components, including the outer membrane protein Amuc_1100, -derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus.

View Article and Find Full Text PDF

The increasing global population and the environmental consequences of meat consumption have led to the exploration of alternative sources of protein. Edible insects have gained attention as a sustainable and nutritionally rich meat alternative. We investigated the effects of two commonly consumed insects, larva and pupa, on beneficial gut microbiota growth, using whole 16s metagenome sequencing to assess diet-associated changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!