Tomato wilt is a widespread soilborne disease of tomato that has caused significant yield losses in many tomato growing regions of the world. Previously, it was reported that tomato wilt can be caused by many pathogens, such as , , , , and . In addition, we have already reported that caused symptomatic disease of tomato wilt for the first time in China. The symptoms of tomato wilt caused by these pathogens are similar, making it difficult to distinguish them in the field. However, specific identification method has not been reported. Therefore, it is of great importance to develop a rapid and reliable diagnostic method for to establish a more effective plan to control the disease. In this study, we designed -specific forward primers and reverse primers with a fragment size of 283bp located in the gene encoding carbamoyl phosphate synthase arginine-specific large chain by whole genome sequence comparison analysis of the genomes of eight spp.. We then tested different dNTP, Mg concentrations, and annealing temperatures to determine the optimal parameters for the PCR system. We evaluated the specificity, sensitivity and stability of the PCR system based on the optimized reaction system and conditions. The PCR system can specifically identify the target pathogens from different fungal pathogens, and the lower detection limit of the target pathogens is at concentrations of 10 pg/uL. In addition, we can accurately identify in tomato samples using the optimized PCR method. These results prove that the PCR method developed in this study can accurately identify and diagnose .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693239 | PMC |
http://dx.doi.org/10.7717/peerj.16473 | DOI Listing |
Pest Manag Sci
January 2025
Department of Plant Pathology and Weed Research, ARO-the Volcani Institute, Rishon LeZion, Israel.
Background: Fungal plant diseases cause major crop losses. Phytopathogenic fungi's ability to evolve resistance to fungicides, alongside ongoing prohibition of such agents by the European Commission because of their pronounced adverse effects on human health and the environment, make their control a challenge. Moreover, the development of less perilous fungicides is a complex task.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia. Electronic address:
Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, is a soil-borne, vascular-colonizing fungal pathogen that severely impacts tomato production in most growing regions worldwide.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea.
For plant diseases to become established, plant pathogens require not only virulence factors and susceptible hosts, but also optimal environmental conditions. The accumulation of high soil salinity can have serious impacts on agro-biological ecosystems. However, the interactions between plant pathogens and salinity have not been fully characterized.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Agronomy and Plant Breeding Sciences, Agricultural College of Aburaihan, University of Tehran, Pakdasht, Iran.
Background: Tomato yellow leaf curl virus (TYLCV), tomato mosaic virus (ToMV), and Fusarium wilt are three of tomatoes' most important viral and fungal diseases.
Methods And Results: In this study, the application of molecular markers associated with tomato yellow leaf curl virus resistance gene (Ty1), tomato mosaic virus resistance gene (Tm2), and Fusarium wilt resistance gene (I-1) (linked marker) were evaluated. In order to optimize and use SNP markers (by HRM diagnostic method) and SCAR markers, segregating populations of tomatoes were produced by self-pollination of commercial hybrid cultivars.
Phytopathology
January 2025
Virginia Polytechnic Institute and State University, School of Plant and Environmental Science, Blacksburg, Virginia, United States;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!