Modeling ocean distributions and abundances of natural- and hatchery-origin Chinook salmon stocks with integrated genetic and tagging data.

PeerJ

Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States of America.

Published: December 2023

Background: Considerable resources are spent to track fish movement in marine environments, often with the intent of estimating behavior, distribution, and abundance. Resulting data from these monitoring efforts, including tagging studies and genetic sampling, often can be siloed. For Pacific salmon in the Northeast Pacific Ocean, predominant data sources for fish monitoring are coded wire tags (CWTs) and genetic stock identification (GSI). Despite their complementary strengths and weaknesses in coverage and information content, the two data streams rarely have been integrated to inform Pacific salmon biology and management. Joint, or integrated, models can combine and contextualize multiple data sources in a single statistical framework to produce more robust estimates of fish populations.

Methods: We introduce and fit a comprehensive joint model that integrates data from CWT recoveries and GSI sampling to inform the marine life history of Chinook salmon stocks at spatial and temporal scales relevant to ongoing fisheries management efforts. In a departure from similar models based primarily on CWT recoveries, modeled stocks in the new framework encompass both hatchery- and natural-origin fish. We specifically model the spatial distribution and marine abundance of four distinct stocks with spawning locations in California and southern Oregon, one of which is listed under the U.S. Endangered Species Act.

Results: Using the joint model, we generated the most comprehensive estimates of marine distribution to date for all modeled Chinook salmon stocks, including historically data poor and low abundance stocks. Estimated marine distributions from the joint model were broadly similar to estimates from a simpler, CWT-only model but did suggest some differences in distribution in select seasons. Model output also included novel stock-, year-, and season-specific estimates of marine abundance. We observed and partially addressed several challenges in model convergence with the use of supplemental data sources and model constraints; similar difficulties are not unexpected with integrated modeling. We identify several options for improved data collection that could address issues in convergence and increase confidence in model estimates of abundance. We expect these model advances and results provide management-relevant biological insights, with the potential to inform future mixed-stock fisheries management efforts, as well as a foundation for more expansive and comprehensive analyses to follow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691356PMC
http://dx.doi.org/10.7717/peerj.16487DOI Listing

Publication Analysis

Top Keywords

chinook salmon
12
salmon stocks
12
data sources
12
joint model
12
model
10
data
9
pacific salmon
8
cwt recoveries
8
fisheries management
8
management efforts
8

Similar Publications

Risk Assessment of Harmful Algal Blooms in Salmon Farming: Scotland as a Case Study.

Toxins (Basel)

January 2025

Scottish Association for Marine Science-UHI, Oban PA37 1QA, UK.

This study explored harmful algal bloom (HAB) risk as a function of exposure, hazard and vulnerability, using Scotland as a case study. Exposure was defined as the fish biomass estimated to be lost from a bloom event, based on the total recorded annual production. Hazard was estimated from literature-reported bloom events.

View Article and Find Full Text PDF

Spin crossover (SCO) iron (II) coordination compounds in the form of nanohybrid SCO@SiO particles were prepared using a reverse micelles technique based on the TritonX-100/cyclohexane/water ternary system. Tetraethyl orthosilicate (TEOS) acts as precursor of both the SiF counter-anion and SiO to obtain Fe(NHtrz)(BF)(SiF)@SiO nanoparticles with different sizes and morphologies while modifying the TEOS concentration and reaction time. The adjustable mixed-anion strategy leads to a range of quite scarce abrupt spin crossover behaviors with hysteresis just above room temperature (ca.

View Article and Find Full Text PDF

Polydeoxyribonucleotide (PDRN) has emerged as a potent bioactive compound with proven efficacy in wound healing, tissue regeneration, and anti-inflammatory applications and is predominantly derived from salmonid gonads. However, this study presents a groundbreaking advancement by successfully extracting and characterizing PDRN from microbial sources, specifically , marking the first report to utilize microbial-, biome-, or -derived PDRN (L-PDRN). The findings demonstrate the enhanced biological properties of L-PDRN over traditional salmon-derived PDRN across several assays.

View Article and Find Full Text PDF

Giant unilamellar vesicles (GUVs) are versatile cell models in biomedical and environmental research. Of the various GUV production methods, hydrogel-assisted GUV production is most easily implemented in a typical biological laboratory. To date, agarose, polyvinyl alcohol, cross-linked dextran-PEG, polyacrylamide, and starch hydrogels have been used to produce GUVs.

View Article and Find Full Text PDF

A near-infrared amine/HSO probe with colorimetric and fluorescent ultrafast response and its application in food samples and visual evaluation of salmon freshness.

Food Res Int

February 2025

College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China.

A multifunctional near-infrared fluorescent probe (Sycy) is synthesized by the one-step condensation reaction of syringaldehyde and tricyanofuran. Sycy can detect HSO within 150 s in the red wine and sugar samples with a low detection limit of 3.5 μM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!