A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AI-Generated Information for Vascular Patients: Assessing the Standard of Procedure-Specific Information Provided by the ChatGPT AI-Language Model. | LitMetric

Introduction Ensuring access to high-quality information is paramount to facilitating informed surgical decision-making. The use of the internet to access health-related information is increasing, along with the growing prevalence of AI language models such as ChatGPT. We aim to assess the standard of AI-generated patient-facing information through a qualitative analysis of its readability and quality. Materials and methods We performed a retrospective qualitative analysis of information regarding three common vascular procedures: endovascular aortic repair (EVAR), endovenous laser ablation (EVLA), and femoro-popliteal bypass (FPBP). The ChatGPT responses were compared to patient information leaflets provided by the vascular charity, Circulation Foundation UK. Readability was assessed using four readability scores: the Flesch-Kincaid reading ease (FKRE) score, the Flesch-Kincaid grade level (FKGL), the Gunning fog score (GFS), and the simple measure of gobbledygook (SMOG) index. Quality was assessed using the DISCERN tool by two independent assessors. Results The mean FKRE score was 33.3, compared to 59.1 for the information provided by the Circulation Foundation (SD=14.5, p=0.025) indicating poor readability of AI-generated information. The FFKGL indicated that the expected grade of students likely to read and understand ChatGPT responses was consistently higher than compared to information leaflets at 12.7 vs. 9.4 (SD=1.9, p=0.002). Two metrics measure readability in terms of the number of years of education required to understand a piece of writing: the GFS and SMOG. Both scores indicated that AI-generated answers were less accessible. The GFS for ChatGPT-provided information was 16.7 years versus 12.8 years for the leaflets (SD=2.2, p=0.002) and the SMOG index scores were 12.2 and 9.4 years for ChatGPT and the patient information leaflets, respectively (SD=1.7, p=0.001). The DISCERN scores were consistently higher in human-generated patient information leaflets compared to AI-generated information across all procedures; the mean score for the information provided by ChatGPT was 50.3 vs. 56.0 for the Circulation Foundation information leaflets (SD=3.38, p<0.001). Conclusion We concluded that AI-generated information about vascular surgical procedures is currently poor in both the readability of text and the quality of information. Patients should be directed to reputable, human-generated information sources from trusted professional bodies to supplement direct education from the clinician during the pre-procedure consultation process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691169PMC
http://dx.doi.org/10.7759/cureus.49764DOI Listing

Publication Analysis

Top Keywords

patient leaflets
12
circulation foundation
12
provided chatgpt
8
qualitative analysis
8
chatgpt responses
8
fkre score
8
consistently higher
8
smog scores
8
chatgpt
6
leaflets
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!