Background: A successful clinical outcome for total hip arthroplasty (THA) depends on accurate sizing and positioning of the implants. Using three-dimensional (3-D) pre-operative planning with a computerized tomography (CT) scan has many potential advantages over conventional 2-D planning using radiographs, including potentially more accurate assessments of the size and anteversion of the acetabulum, as well as lateral femoral offset. The purpose of this study was to compare the accuracy of 3-D to 2-D templating with respect to acetabular and femoral size, as well as lateral femoral offset.
Methods: Pre-operative templating data was collected prospectively from a consecutive series of 290 primary THAs (acetabulum on all, femoral component on 255 of the cases using one specific stem). All cases were initially templated on a digital imaging picture archiving and communication (PACS) system with calibrated images to estimate the acetabular size, femoral size, and lateral femoral offset. The 3-D templating was then performed with software based on a CT scan, and the results were compared to what was surgically implanted.
Results: The 3-D templating for the acetabulum was accurate 99.7% of the time based on the final implanted component. The 2-D templating for the acetabulum was accurate 39% of the time, with 46% of cases templating smaller and 15% templating larger. The 3-D templating of the femoral component was accurate 63% of the time, and within one size of final implant in 96% of cases. The 2-D templating of the femoral component was accurate 53% of the time and within one size of final implant in 94% of cases. The 2-D templated femoral offset was accurate 87% of the time and was changed in 13% of cases after 3-D templating.
Conclusion: The CT-based 3-D preoperative planning was superior to 2-D planning for THA with respect to acetabular size, femoral size, and lateral femoral offset. Precise acetabular component sizing conserves bone and allows for a more predictable press fit, while facilitating efficient inventory management. Lateral femoral offset is often difficult to measure on 2-D images, and 3-D templating consistently allows for accurate offset restoration, which is important for normal hip function and stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686848 | PMC |
http://dx.doi.org/10.1016/j.jor.2023.11.001 | DOI Listing |
J Clin Med
December 2024
Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8575, Ibaraki, Japan.
Proximal femoral fractures are particularly common in older adults, and cases requiring conversion to total hip arthroplasty may arise because of treatment failure or osteoarthritis. Fractures around the distal screw removal holes can be problematic. This study aimed to analyze the relationship between stem length and femoral stress distribution to determine the optimal stem length.
View Article and Find Full Text PDFPurpose: Tibial rotational deformity is a known risk factor for patellofemoral joint (PFJ) disorders. However, it is commonly associated with other abnormalities which affect the PFJ. The purpose of this study was to describe the prevalence of associated factors known to affect PFJ in patients undergoing rotational tibial osteotomy and their implication for the correction level.
View Article and Find Full Text PDFCureus
December 2024
Orthopaedics and Traumatology, Kocaeli State Hospital, Kocaeli, TUR.
Background This study hypothesizes that patients with femoral condylar hypoplasia who undergo total knee arthroplasty (TKA) may experience femoral component malrotation and that the surgeon performing the operation may not notice it. The aim is to measure the rotational alignment of the femoral components and assess the functional outcomes in these patients. Materials and methods Between December 2018 and December 2022, a total of 96 knees from 80 patients were evaluated.
View Article and Find Full Text PDFCureus
December 2024
Orthopedics and Traumatology, Unidade Local de Saúde do Nordeste, Macedo de Cavaleiros, PRT.
The plantaris tendon may be absent in some individuals, indicating its unclear function. Anatomically, the plantaris tendon originates from the lateral femoral condyle and has a variable course and insertion point at the calcaneal tuberosity. The plantaris tendon may influence conditions such as Achilles tendinopathy, particularly in its midportion, whether by its close relation to the calcaneal tendon or adhesions between both tendons.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Orthopaedic Surgery, Atrium Health Musculoskeletal Institute, 2001 Vail Ave, Charlotte, NC, USA.
Background: Hip morphology variations, particularly in femoral neck shaft angle (NSA) and iliac wing width (IWW), have been associated with gluteal tendinopathy. However, the biomechanical implications of these morphological differences on gluteal muscle function are not well understood. This study investigates how NSA and IWW influence gluteal muscle forces, moment arms, and estimated tendon loads during walking, aiming to provide insights into the potential biomechanical pathways that may contribute to altered lateral hip loading patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!