Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing high surface area catalysts is an effective strategy to enhance the oxygen reduction reaction (ORR) in the application of microbial fuel cells (MFCs). This can be achieved by developing a catalyst based on metal-organic frameworks (MOFs) because they offer a porous active site for ORR. In this work, a novel in situ growth of 2D shell nanowires of ZIF-67 as a template for N-doped carbon (Co/NC) via a carbonization route was developed to enhance the ORR performance. The effects of different reaction times and different annealing temperatures were studied for a better ORR activity. The growth of the MOF template on the carbon cloth was confirmed using scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared. The Co/NC-800 exhibited an enhancement in the ORR activity as evidenced by an onset potential and half-wave potential of 0.0 vs V Ag/AgCl and -0.1 vs V Ag/AgCl, respectively, with a limited current density exceeding the commercial Pt/C. Operating Co/NC-800 on MFC revealed a maximum power density of 30 ± 2.5 mW/m, a maximum current density of 180 ± 2.5 mA/m.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688201 | PMC |
http://dx.doi.org/10.1021/acsomega.3c02544 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!