Introduction And Background: While recurrent glioblastoma patients are often treated with re-irradiation, there is limited data on the use of re-irradiation in the setting of bevacizumab (BEV), temozolomide (TMZ) re-challenge, or immune checkpoint inhibition (ICI). We describe target delineation in patients with prior anti-angiogenic therapy, assess safety and efficacy of re-irradiation, and evaluate patterns of recurrence.

Materials And Methods: Patients with a histologically confirmed diagnosis of glioblastoma treated at a single institution between 2013 and 2021 with re-irradiation were included. Tumor, treatment and clinical data were collected. Logistic and Cox regression analysis were used for statistical analysis.

Results: One hundred and seventeen recurrent glioblastoma patients were identified, receiving 129 courses of re-irradiation. In 66 % (85/129) of cases, patients had prior BEV. In the 80 patients (62 %) with available re-irradiation plans, 20 (25 %) had all T2/FLAIR abnormality included in the gross tumor volume (GTV). Median overall survival (OS) for the cohort was 7.3 months, and median progression-free survival (PFS) was 3.6 months. Acute CTCAE grade ≥ 3 toxicity occurred in 8 % of cases. Concurrent use of TMZ or ICI was not associated with improved OS nor PFS. On multivariable analysis, higher KPS was significantly associated with longer OS (p < 0.01). On subgroup analysis, patients with prior BEV had significantly more marginal recurrences than those without (26 % vs. 13 %, p < 0.01).

Conclusion: Re-irradiation can be safely employed in recurrent glioblastoma patients. Marginal recurrence was more frequent in patients with prior BEV, suggesting a need to consider more inclusive treatment volumes incorporating T2/FLAIR abnormality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689476PMC
http://dx.doi.org/10.1016/j.ctro.2023.100697DOI Listing

Publication Analysis

Top Keywords

target delineation
8
recurrent glioblastoma
8
glioblastoma patients
8
patients prior
8
re-irradiation
7
patients
6
re-irradiation recurrent
4
recurrent idh-wildtype
4
glioblastoma
4
idh-wildtype glioblastoma
4

Similar Publications

Upregulated YTHDC1 mediates trophoblastic dysfunction inducing preterm birth in ART conceptions through enhanced RPL37 translation.

Cell Mol Life Sci

December 2024

The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China.

Assisted reproductive technology (ART) pregnancies present a higher risk of singleton preterm birth than natural pregnancies, but the underlying molecular mechanism remains largely unknown. RNA mA modification is a key epigenetic mechanism regulating cellular function, but the role of mA modification, especially its "reader" YTHDC1, in preterm delivery remains undefined. To delineate the role and epigenetic mechanism of mA modification in ART preterm delivery, the effects of YTHDC1 on trophoblastic function were evaluated by CCK-8, EdU, Transwell, and flow cytometry analyses post its overexpression or knockdown.

View Article and Find Full Text PDF

Unveiling the molecular blueprint of SKP-SCs-mediated tissue engineering-enhanced neuroregeneration.

J Nanobiotechnology

December 2024

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.

Peripheral nerve injury poses a significant challenge to the nervous system's regenerative capacity. We previously described a novel approach to construct a chitosan/silk fibroin nerve graft with skin-derived precursor-induced Schwann cells (SKP-SCs). This graft has been shown to promote sciatic nerve regeneration and functional restoration to a level comparable to that achieved by autologous nerve grafts, as evidenced by behavioral, histological, and electrophysiological assessments.

View Article and Find Full Text PDF

Multimodal data, while being information-rich, contains complementary as well as redundant information. Depending on the target problem some modalities are more informative and thus relevant for decision-making. Identifying the optimal subset of modalities best suited to solve a particular task significantly reduces the complexity of acquisition without compromising performance.

View Article and Find Full Text PDF

Radiomics and deep learning models for glioblastoma treatment outcome prediction based on tumor invasion modeling.

Phys Med

December 2024

Division of Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.

Purpose: We investigate the feasibility of using a biophysically guided approach for delineating the Clinical Target Volume (CTV) in Glioblastoma Multiforme (GBM) by evaluating its impact on the treatment outcomes, specifically Overall Survival (OS) time.

Methods: An established reaction-diffusion model was employed to simulate the spatiotemporal evolution of cancerous regions in T1-MRI images of GBM patients. The effects of the parameters of this model on the simulated tumor borders were quantified and the optimal values were used to estimate the distribution of infiltrative cells (CTVmodel).

View Article and Find Full Text PDF

IRG1/Itaconate inhibits hepatic stellate cells ferroptosis and attenuates TAA-induced liver fibrosis by regulating SLC39A14 expression.

Int Immunopharmacol

December 2024

Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Electronic address:

This study aimed to elucidate the protective roles of Immune Response Gene-1 (IRG1) and exogenous itaconate in murine models of hepatic fibrosis and to delineate the underlying mechanistic pathways using both wild-type and IRG1-deficient (IRG1) mice. Primary murine stellate cells (mHSC) and bone marrow-derived macrophages (BMDM) were isolated and cocultured. Hepatocellular fibrosis was induced in vitro using Transforming Growth Factor-beta (TGF-β) to evaluate the protective efficacy of IRG1/itaconate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!