The metabolic system and immunology used to be seen as distinct fields of study. Recent developments in our understanding of how the immune system operates in health and disease have connected these fields to complex systems. An effective technique for identifying probable abnormalities of metabolic homeostasis brought on by disease is metabolomics, which is defined as the thorough study of small molecule metabolic intermediates within a biological system that collectively make up the metabolome. A prognostic metabolic biomarker with adequate prognostic accuracy for tuberculosis progression has recently been created. The rate-limiting host enzyme for the conversion of tryptophan to kynurenine, indoleamine 2,3-dioxygenase (IDO), is greatly elevated in the lungs of tuberculosis disease patients. Targeted study on tryptophan in tuberculosis disease indicates that such decreases may also resembled this upregulation. Although tuberculosis diagnosis has improved with the use of interferon release assay and tuberculosis nucleic acid amplification, tuberculosis control is made difficult by the lack of a biomarker to diagnose active tuberculosis disease. We hope that the reader of this work can develop an understanding of the advantages of metabolomics testing, particularly as a sort of testing that can be used for both diagnosing and monitoring a patient's response to treatment for tuberculosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693202 | PMC |
http://dx.doi.org/10.2147/IJGM.S438364 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!