Rare disease patients often endure prolonged diagnostic odysseys and may still remain undiagnosed for years. Selecting the appropriate genetic tests is crucial to lead to timely diagnosis. Phenotypic features offer great potential for aiding genomic diagnosis in rare disease cases. We see great promise in effective integration of phenotypic information into genetic test selection workflow. In this study, we present a phenotype-driven molecular genetic test recommendation (Phen2Test) for pediatric rare disease diagnosis. Phen2Test was constructed using frequency matrix of phecodes and demographic data from the EHR before ordering genetic tests, with the objective to streamline the selection of molecular genetic tests (whole-exome / whole-genome sequencing, or gene panels) for clinicians with minimum genetic training expertise. We developed and evaluated binary classifiers based on 1,005 individuals referred to genetic counselors for potential genetic evaluation. In the evaluation using the gold standard cohort, the model achieved strong performance with an AUROC of 0.82 and an AUPRC of 0.92. Furthermore, we tested the model on another silver standard cohort (n=6,458), achieving an overall AUROC of 0.72 and an AUPRC of 0.671. Phen2Test was adjusted to align with current clinical guidelines, showing superior performance with more recent data, demonstrating its potential for use within a learning healthcare system as a genomic medicine intervention that adapts to guideline updates. This study showcases the practical utility of phenotypic features in recommending molecular genetic tests with performance comparable to clinical geneticists. Phen2Test could assist clinicians with limited genetic training and knowledge to order appropriate genetic tests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690317 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-3593490/v1 | DOI Listing |
PLoS Pathog
January 2025
REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa.
Plasmodium vivax is the predominant malaria parasite in Latin America. Its colonization history in the region is rich and complex, and is still highly debated, especially about its origin(s). Our study employed cutting-edge population genomic techniques to analyze whole genome variation from 620 P.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).
View Article and Find Full Text PDFHepatology
January 2025
School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
JAMA Netw Open
January 2025
City of Hope National Medical Center, Duarte, California.
Importance: Enhanced breast cancer screening with magnetic resonance imaging (MRI) is recommended to women with elevated risk of breast cancer, yet uptake of screening remains unclear after genetic testing.
Objective: To evaluate uptake of MRI after genetic results disclosure and counseling.
Design, Setting, And Participants: This multicenter cohort study was conducted at the University of Southern California Norris Cancer Hospital, the Los Angeles General Medical Center, and the Stanford University Cancer Institute.
Neurogenetics
January 2025
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
Intermediate CAG repeats from 29 to 33 in the ATXN2 gene contributes to the risk of amyotrophic lateral sclerosis (ALS) in European and Asian populations. In this study, 148 ALS patients of multiethnic descent: Chinese (56.1%), Malay (24.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!