The corpus callosum (CC) is the most important interhemispheric white matter (WM) structure composed of several anatomically and functionally distinct WM tracts. Resolving these tracts is a challenge since the callosum appears relatively homogenous in conventional structural imaging. Commonly used callosal parcellation methods such as the Hofer/Frahm scheme rely on rigid geometric guidelines to separate the substructures that are limited to consider individual variation. Here we present a novel subject-specific and microstructurally-informed method for callosal parcellation based on axonal water fraction (ƒ) known as a diffusion metric reflective of axon caliber and density. We studied 30 healthy subjects from the Human Connectome Project (HCP) dataset with multi-shell diffusion MRI. The biophysical parameter ƒ was derived from compartment-specific WM modeling. Inflection points were identified where there were concavity changes in ƒ across the CC to delineate callosal subregions. We observed relatively higher ƒ in anterior and posterior areas consisting of a greater number of small diameter fibers and lower ƒ in posterior body areas of the CC consisting of a greater number of large diameter fibers. Based on degree of change in ƒ along the callosum, seven callosal subregions can be consistently delineated for each individual. We observe that ƒ can capture differences in underlying tissue microstructures and seven subregions can be identified across CC. Therefore, this method provides microstructurally informed callosal parcellation in a subject-specific way, allowing for more accurate analysis in the corpus callosum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690318PMC
http://dx.doi.org/10.21203/rs.3.rs-3645723/v1DOI Listing

Publication Analysis

Top Keywords

corpus callosum
12
callosal parcellation
12
microstructurally informed
8
axonal water
8
water fraction
8
callosal subregions
8
areas consisting
8
consisting greater
8
greater number
8
diameter fibers
8

Similar Publications

Objective: To explore the clinical phenotype, pregnancy outcome and follow-up of fetuses with 15q11.2BP1-BP2 microdeletions in order to provide a basis for prenatal and reproductive consultation.

Methods: From March 2019 to December 2023, 20 fetuses who were diagnosed with 15q11.

View Article and Find Full Text PDF

Marchiafava-Bignami disease (MBD) is a rare condition characterized by demyelination and necrosis of the corpus callosum, most commonly associated with chronic alcohol consumption. However, it can also occur in non-alcoholic patients and may present secondary to other underlying conditions. We report a case of a 52-year-old male with no history of alcohol use or significant comorbidities, presenting with impaired consciousness and severe malnutrition.

View Article and Find Full Text PDF

Cerebral arteriovenous malformations (AVMs) are rare but complex vascular anomalies, particularly challenging when located in eloquent regions such as the corpus callosum and post-central gyrus. This report aims to highlight the management and outcomes of a 41-year-old female patient with a hemorrhagic AVM in these critical areas, emphasizing the importance of early surgical intervention and advanced imaging techniques. The patient presented with a right-sided tonic-clonic seizure and expressive aphasia, prompting imaging that revealed a complex AVM with deep venous drainage and arterial supply from the anterior cerebral artery.

View Article and Find Full Text PDF

Here, we report the case of a 29-year-old male with classic Pelizaeus-Merzbacher disease (PMD) harboring the PLP1 variant NM_000533.5:c.62 C > T, leading to an NP_000524.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal storage disorder leading to deleterious brain effects. While animal models suggested that MPS I severely affects white matter (WM), whole-brain diffusion tensor imaging (DTI) analysis was not performed due to MPS-related morphological abnormalities. 3T DTI data from 28 severe (MPS IH, treated with hematopoietic stem cell transplantation-HSCT), 16 attenuated MPS I patients (MPS IA) enrolled under the study protocol NCT01870375, and 27 healthy controls (HC) were analyzed using the free-water correction (FWC) method to resolve macrostructural partial volume effects and unravel differences in DTI metrics accounting for microstructural abnormalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!