Epilepsy and epileptiform patterns of cortical activity are highly prevalent in autism spectrum disorders (ASDs), but the neural substrates and pathophysiological mechanisms underlying the onset of cortical dysfunction in ASD remains elusive. Reduced cortical expression of Parvalbumin (PV) has been widely observed in ASD mouse models and human postmortem studies, suggesting a crucial role of PV interneurons (PVINs) in ASD pathogenesis. mice carrying a Δ13-16 deletion in SHANK3 exhibit cortical hyperactivity during postnatal development and reduced sensory responses in cortical GABAergic interneurons in adulthood. However, whether these phenotypes are associated with PVIN dysfunction is unknown. Using whole-cell electrophysiology and a viral-based strategy to label PVINs during postnatal development, we performed a developmental characterization of AMPAR miniature excitatory postsynaptic currents (mEPSCs) in PVINs and pyramidal (PYR) neurons of layer (L) 2/3 mPFC in mice. Surprisingly, reduced mEPSC frequency was observed in both PYR and PVIN populations, but only in adulthood. At P15, when cortical hyperactivity is already observed, both neuron types exhibited normal mEPSC amplitude and frequency, suggesting that glutamatergic connectivity deficits in these neurons emerge as compensatory mechanisms. Additionally, we found normal mEPSCs in adult PVINs of L2/3 somatosensory cortex, revealing region-specific phenotypic differences of cortical PVINs in mice. Together, these results demonstrate that loss of Shank3 alters PVIN function but suggest that PVIN glutamatergic synapses are a suboptimal therapeutic target for normalizing early cortical imbalances in SHANK3-associated disorders. More broadly, these findings underscore the complexity of interneuron dysfunction in ASDs, prompting further exploration of region and developmental stage specific phenotypes for understanding and developing effective interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690261PMC
http://dx.doi.org/10.1101/2023.11.23.568500DOI Listing

Publication Analysis

Top Keywords

cortical
9
cortical hyperactivity
8
postnatal development
8
pvins
5
late onset
4
onset regional
4
regional heterogeneity
4
heterogeneity synaptic
4
synaptic deficits
4
deficits cortical
4

Similar Publications

Importance: Mania/hypomania is the pathognomonic feature of bipolar disorder (BD). As BD is often misdiagnosed as major depressive disorder (MDD), replicable neural markers of mania/hypomania risk are needed for earlier BD diagnosis and pathophysiological treatment development.

Objective: To replicate the previously reported positive association between left ventrolateral prefrontal cortex (vlPFC) activity during reward expectancy (RE) and mania/hypomania risk, to explore the effect of MDD history on this association, and to compare RE-related left vlPFC activity in individuals with and at risk of BD.

View Article and Find Full Text PDF

Importance: Facial synkinesis refers to pathologic cocontraction and baseline hypertonicity of muscles innervated by the facial nerve, commonly attributed to the aberrant regeneration of nerve fibers following injury. The pathomechanism and optimal treatment of facial synkinesis remain unclear. The goal of this review is to highlight current understanding of the epidemiology, pathophysiology, clinical presentation, assessment, and treatment of facial synkinesis.

View Article and Find Full Text PDF

In Vivo Clonal Analysis Using MADM with Spatiotemporal Specificity.

Methods Mol Biol

January 2025

IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing, People's Republic of China.

Mosaic analysis with double markers (MADM) is a powerful in vivo lineage tracing technique. It utilizes Cre recombinase-dependent interchromosomal recombination to restore the stable expression of two fluorescent proteins sparsely in individual dividing stem or progenitor cells and their progenies. Here, we describe the application of this technique for quantitative lineage analysis of radial glial progenitors in the developing mouse neocortex at the single-cell resolution.

View Article and Find Full Text PDF

Mosaic Analysis with Double Markers (MADM) represents a mouse genetic approach coupling differential fluorescent labeling to genetic manipulations in dividing cells and their lineages. MADM uniquely enables the generation and visualization of individual control or homozygous mutant cells in a heterozygous genetic environment. Among its diverse applications, MADM has been used to dissect cell-autonomous gene functions important for cortical development and neural development in general.

View Article and Find Full Text PDF

Bayesian Phylogenetic Lineage Reconstruction with Loss of Heterozygosity Mutations Derived from Single-Cell RNA Sequencing.

Methods Mol Biol

January 2025

Allen Discovery Center for Lineage Tracing and Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA.

Mutations are acquired frequently, such t`hat each cell's genome inscribes its history of cell divisions. Loss of heterozygosity (LOH) accumulates throughout the genome, offering large encoding capacity for phylogenetic inference of cell lineage.In this chapter, we demonstrate a method, using single-cell RNA sequencing, for reconstructing cell lineages from inferred LOH events in a Bayesian manner, annotating the lineage with cell phenotypes, and marking developmental time points based on X-chromosome inactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!