Significance: Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research.
Aim: We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs.
Approach: We quantified efficacy of LMOs through whole cell patch clamp recordings in HEK293 cells by determining coupling efficiency, the percentage of maximum LED induced photocurrent achieved with bioluminescent activation of an opsin. We confirmed key results by multielectrode array (MEAs) recordings in primary neurons.
Results: Luciferase brightness and opsin sensitivity had the most impact on the efficacy of LMOs, and N-terminal fusions of luciferases to opsins performed better than C-terminal and multi-terminal fusions. Precise paring of luciferase emission and opsin absorption spectra appeared to be less critical.
Conclusions: Whole cell patch clamp recordings allowed us to quantify the impact of different characteristics of LMOs on their function. Our results suggest that coupling brighter bioluminescent sources to more sensitive opsins will improve LMO function. As bioluminescent activation of opsins is most likely based on Förster resonance energy transfer (FRET), the most effective strategy for improving LMOs further will be molecular evolution of luciferase-fluorescent protein-opsin fusions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690276 | PMC |
http://dx.doi.org/10.1101/2023.11.22.568342 | DOI Listing |
Neurophotonics
April 2024
Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States.
Significance: Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research.
Aim: We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs.
bioRxiv
November 2023
Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States.
Significance: Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research.
Aim: We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs.
Int J Mol Sci
October 2022
Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
Irrespective of the many strategies focused on dealing with spinal cord injury (SCI), there is still no way to restore motor function efficiently or an adequate regenerative therapy. One promising method that could potentially prove highly beneficial for rehabilitation in patients is to re-engage specific neuronal populations of the spinal cord following SCI. Targeted activation may maintain and strengthen existing neuronal connections and/or facilitate the reorganization and development of new connections.
View Article and Find Full Text PDFJ Chem Theory Comput
August 2021
Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, P. R. China.
It is shown that in the spirit of "from fragments to molecule" for localizing molecular orbitals [ 3643], a prechosen set of occupied/virtual valence/core atomic/fragmental orbitals can be transformed to an equivalent set of localized occupied/virtual pre-localized molecular orbitals (pre-LMO), which can then be taken as probes to select the same number of maximally matching localized occupied/virtual Hartree-Fock (HF) or restricted open-shell HF (ROHF) molecular orbitals as the initial local orbitals spanning the desired complete active space (CAS). In each cycle of the self-consistent field (SCF) calculation, the CASSCF orbitals can be localized by means of the noniterative "top-down least-change" algorithm for localizing ROHF orbitals [ 104104] such that the maximum matching between the orbitals of two adjacent iterations can readily be monitored, leading finally to converged localized CASSCF orbitals that overlap most the guess orbitals. Such an approach is to be dubbed as "imposed CASSCF" (iCASSCF or simply iCAS in short) for good reasons: (1) it has been assumed that only those electronic states that have largest projections onto the active space defined by the prechosen atomic/fragmental orbitals are to be targeted.
View Article and Find Full Text PDFAnn Hepatol
November 2014
Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002 LRK Rosario, Argentina.
Introduction: This work focuses on ammonia metabolism of Liver Microorgans (LMOs) after cold preservation in a normothermic reoxygenation system (NRS). We have previously reported the development of a novel preservation solution, Bes-Gluconate-PEG 35 kDa (BG35) that showed the same efficacy as ViaSpan to protect LMOs against cold preservation injury. The objective of this work was to study mRNA levels and activities of two key Urea Cycle enzymes, Carbamyl Phosphate Synthetase I (CPSI) and Ornithine Transcarbamylase (OTC), after preservation of LMOs in BG35 and ViaSpan and the ability of these tissue slices to detoxify an ammonia overload in a NRS model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!