Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rising natural resource consumption leads to increased hazardous gas emissions, necessitating the concrete industry's focus on sustainable alternatives like palm oil fuel ash (POFA) to replace cement. Also, advanced machine learning (ML) techniques can uncover previously unreported insights about the effects of POFA that may be missing from the literature. Hence, this study investigates the influence of varying concentrations of POFA on fresh and mechanical characteristics with quantifying ML approaches and microstructural performance, as well as the environmental impact of structural concrete. For this, cement substitutions of 5 %, 15 %, 25 %, 35 %, and 45 % (by weight of cement) were utilized. POFA enhanced the overall concrete workability, with slump increments ranging from approximately 9 %-55 % and compacting factor increments of 4 %-12 %. Mechanical performance of POFA concrete improved up to 25 % replacement levels, with the highest enhancements observed in compressive (4.5 %), splitting tensile (36 %), and flexural (31 %) strength, for the mix containing 15 % POFA. The finer particle size of POFA improved microstructural performance by reducing porosity, aligning with the enhanced mechanical strength. The environmental impact of POFA was assessed by measuring eCO emissions, revealing a potential reduction of up to 44 %. Incorporating 5 %-15 % POFA yielded ideal mechanical performance results, significantly enhancing sustainability and cost-effectiveness. Regarding the ML approach, it can be observed that a low regression coefficient (R) contrasts sharply with the higher R values for the random forest (RF) and the ensemble model, indicating satisfactory precision prediction with experimental results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689959 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e22296 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!