A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Eco-friendly concrete incorporating palm oil fuel ash: Fresh and mechanical properties with machine learning prediction, and sustainability assessment. | LitMetric

Rising natural resource consumption leads to increased hazardous gas emissions, necessitating the concrete industry's focus on sustainable alternatives like palm oil fuel ash (POFA) to replace cement. Also, advanced machine learning (ML) techniques can uncover previously unreported insights about the effects of POFA that may be missing from the literature. Hence, this study investigates the influence of varying concentrations of POFA on fresh and mechanical characteristics with quantifying ML approaches and microstructural performance, as well as the environmental impact of structural concrete. For this, cement substitutions of 5 %, 15 %, 25 %, 35 %, and 45 % (by weight of cement) were utilized. POFA enhanced the overall concrete workability, with slump increments ranging from approximately 9 %-55 % and compacting factor increments of 4 %-12 %. Mechanical performance of POFA concrete improved up to 25 % replacement levels, with the highest enhancements observed in compressive (4.5 %), splitting tensile (36 %), and flexural (31 %) strength, for the mix containing 15 % POFA. The finer particle size of POFA improved microstructural performance by reducing porosity, aligning with the enhanced mechanical strength. The environmental impact of POFA was assessed by measuring eCO emissions, revealing a potential reduction of up to 44 %. Incorporating 5 %-15 % POFA yielded ideal mechanical performance results, significantly enhancing sustainability and cost-effectiveness. Regarding the ML approach, it can be observed that a low regression coefficient (R) contrasts sharply with the higher R values for the random forest (RF) and the ensemble model, indicating satisfactory precision prediction with experimental results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689959PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e22296DOI Listing

Publication Analysis

Top Keywords

pofa
9
palm oil
8
oil fuel
8
fuel ash
8
fresh mechanical
8
machine learning
8
microstructural performance
8
environmental impact
8
mechanical performance
8
mechanical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!